

9 Coulomb's Law

electric charge is quantized

$$e = 1.602 \times 10^{-19} C \quad q = ne$$

$$F_{12} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}^2} \hat{e}_{12}$$

$IC = 1A \cdot s$ IC 等于电流为1A时, 1s内流过导线中任一截面的电量.

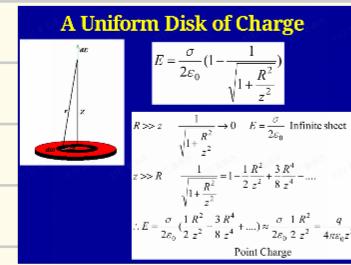
叠加: 矢量和 $F = \sum_{i=1}^n \frac{1}{4\pi\epsilon_0} \frac{q_i q_i}{r_i^2} \hat{e}_{ii}$

continuous charge distributions

i) Thin charged rods: λ linear charge density $dq = \lambda dx \quad \lambda = \frac{q}{L}$

ii) Surface of the carrier bead: σ surface charge density $dq = \sigma dA \quad \sigma = \frac{q}{A}$

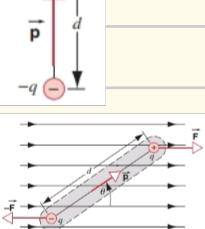
iii) Volume of a 3D object: ρ volume charge density $dq = \rho dV \quad \rho = \frac{q}{V}$



ps. 电场以光速传播

A dipole in an electric field: Two Opposite Charges: Dipole (电偶极矩) eg. H_2O 正负电荷中心不重合

dipole moment vector \vec{p} : $p = qd$ (negative \rightarrow positive)



$$\tau = \vec{r} \times \vec{F}$$

$F = qE$ (opposite directions) torque on each charge: $\tau = Fr_{\perp}$ net torque: $\tau = F \frac{d}{2} \sin\theta + F \frac{d}{2} \sin\theta = Fd \sin\theta$ (perpendicular to the plane of the page and into the page). $\tau = (qE) d \sin\theta = (qd) E \sin\theta = pE \sin\theta \Rightarrow \vec{\tau} = \vec{p} \times \vec{E}$

Work from an initial angle θ_0 to a final angle θ is: $W = \int dW = \int_0^\theta \vec{\tau} \cdot d\vec{\theta} = \int_0^\theta pE \sin\theta d\theta = -pE \int_0^\theta \sin\theta d\theta = pE (\cos\theta - \cos\theta_0)$

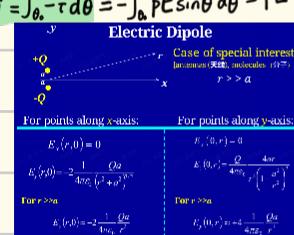
magnitude: $\tau = dF \sin\theta \Rightarrow \vec{\tau} \cdot d\vec{\theta} = -d \cdot d\theta \cdot F \sin\theta$ $dW = \vec{\tau} \cdot d\vec{\theta}$ define:

$$\Rightarrow \Delta U = -W = U(\theta) - U(\theta_0) = -pE (\cos\theta - \cos\theta_0) \quad \theta_0 = 90^\circ \quad U(90^\circ) = 0$$

$$U(\theta) = -pE \cos\theta = -\vec{p} \cdot \vec{E}$$

$$x\text{-axis: } E = \frac{1}{4\pi\epsilon_0} \frac{P}{(x^2 + a^2)^{3/2}} = \frac{1}{4\pi\epsilon_0 x^2} \cdot \frac{P}{(1 + (a/x)^2)^{3/2}}$$

$$\Rightarrow \text{泰勒: } (1+x)^{-3/2} = 1 - \frac{3}{2}x + \frac{3}{2} \cdot \frac{1}{2}x^2 + \dots \Rightarrow E = \frac{P}{4\pi\epsilon_0 x^3} \left[1 - \left(-\frac{3}{2} \right) \left(\frac{a}{x} \right)^2 + \dots \right]$$

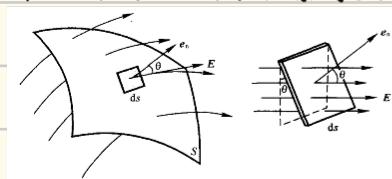


★ 镜像: $d\theta$ 方向也是右手定则 \Rightarrow 垂直向外为沿 θ 方向

电场线、电通量 流量 $\Phi = \oint \vec{E} \cdot d\vec{s}$

垂直于场强方向的面积元 $d\vec{s}$ 上, 通过的电场线数 dN (电场线密度) 正比于该点场强 E 的大小: $E = \frac{dN}{dS}$

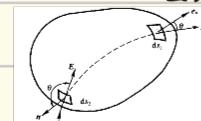
电通量: 电场中任取面积元 dS 可视为平面, dS 所在处的场强 E 也可认为是均匀的。用面积元的法向单位矢量 \hat{e}_n , 规定其正方向, 面积元表示为矢量 $d\vec{s} = dS \hat{e}_n$ 。 $d\vec{s}$ 与所在处的场强 E 的方向成 θ 角, 则定义 $d\Phi_e = E dS \cos \theta = \vec{E} \cdot d\vec{s}$ 为通过面积元 dS 的电通量。通过 dS 的电通量即为通过该面积的电场线总数。



• 叠加得到通过曲面 S 的总电通量, 即 $\Phi_e = \oint d\Phi_e = \int_S \vec{E} \cdot d\vec{s} = \int_S E \cos \theta dS$ (Φ_e 标量, 有正负, $\theta < \frac{\pi}{2}$ 正, $\theta > \frac{\pi}{2}$ 负)

• 通过闭合曲面的通量可以写成: $\Phi_e = \oint_S E \cos \theta dS = \oint_S \vec{E} \cdot d\vec{s}$

通常规定垂直曲面向外为法线正方向



PS. 积分 \oint_S 写成 \oint

9. 高斯定理及其应用 → 定义向外为正

• 通过任意闭合曲面的电通量等于该曲面所包围的所有电荷的代数和除以 ϵ_0 。表达式为: $\Phi_e = \oint_S \vec{E} \cdot d\vec{s} = \frac{1}{\epsilon_0} \sum q_i$ (闭合曲面 S 称为高斯面)。

Proof. 点电荷 (1) 球形闭合面

$$\Phi_e = \oint_S \vec{E} \cdot d\vec{s} = \oint \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dS = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \cdot 4\pi r^2 = \frac{q}{\epsilon_0}$$

(2). 任意闭合面 ds 边缘上各点向点电荷所在处引直线, 形成椎体, 其顶角为立体的, 则该顶点为面积元 dS 对点电荷所张的立体角
立体角用符号 $d\Omega = \frac{d\cos\theta}{r^2}$ (代数量) 闭合曲面内 q 所张的立体角总值为 4π

$$\Phi_e = \oint_S d\Phi_e = \oint_S \frac{q}{4\pi\epsilon_0 r^2} dS \cos\theta = \frac{q}{4\pi\epsilon_0} \oint_S d\Omega = \frac{q}{\epsilon_0}$$

外部: θ_1 为锐角, θ_2 为钝角, 两者立体角数值均为 $d\Omega'$, 符号相反 $d\Phi_{e1} = \vec{E}_1 \cdot d\vec{s}_1 = \frac{q'}{4\pi\epsilon_0} d\Omega'$ $d\Phi_{e2} = \vec{E}_2 \cdot d\vec{s}_2 = -\frac{q'}{4\pi\epsilon_0} d\Omega'$

→ 闭合曲面外电荷对闭合曲面的电通量无贡献

(3). 闭合曲面包围 n 个点电荷 $\Phi_e = \oint_S \vec{E} \cdot d\vec{s} = \oint_S (\vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n) \cdot d\vec{s} = \sum_{i=1}^n \oint_S \vec{E}_i \cdot d\vec{s} + \sum_{i=n+1}^n \oint_S \vec{E}_i \cdot d\vec{s} = \sum_{i=1}^n \frac{q_i}{\epsilon_0}$

若场源电荷连续: $\oint_S \vec{E} \cdot d\vec{s} = \frac{1}{\epsilon_0} \iiint \rho dV$ ρ 为电荷密度, dV 为体积元。

应用: (1). 均匀带电球壳: 1). 球壳外: $\Phi_e = \oint \vec{E} \cdot d\vec{s} = E \oint dS = E \cdot (4\pi r^2) = \frac{Q}{\epsilon_0} \Rightarrow E = \frac{Q}{4\pi\epsilon_0 r^2}$ 表达式: $\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{e}_r$

ps. 如果是带电导体, 那么电荷分布于

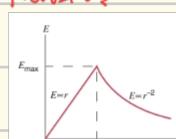
2). 球壳内: 高斯面包围空间无电荷 $\Phi_e = \oint \vec{E} \cdot d\vec{s} = \frac{Q}{\epsilon_0} = 0 \Rightarrow 4\pi r^2 \cdot E = 0 \Rightarrow E = 0$

其外表面, 内部场强为零

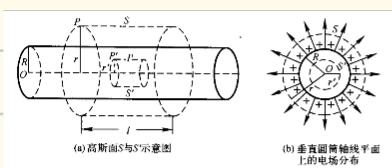
(2). 均匀(绝缘)带电球体: 内部:

总电荷为 $+Q$ $\therefore \rho = \frac{Q}{\frac{4}{3}\pi R^3} = \frac{3Q}{4\pi R^3}$ 内部 $V' = \frac{4}{3}\pi r^3$ $q = \rho \cdot V' = \frac{Qr^3}{R^3}$

$\therefore \Phi_e = \oint \vec{E} \cdot d\vec{s} = E \cdot \oint dS = E \cdot 4\pi r^2 = \frac{q}{\epsilon_0} \Rightarrow E = \frac{qr}{4\pi\epsilon_0 R^3}$ $\therefore E = \begin{cases} \frac{qr}{4\pi\epsilon_0 R^3}, & r < R \\ \frac{Qr}{4\pi\epsilon_0 r^2}, & r > R \end{cases}$



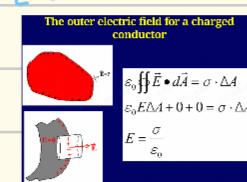
(3). “无限长”均匀带电圆柱面的场强分布: 设带电圆柱面半径为 R , 电荷线密度为 λ



(i) 圆柱面外的场强分布: 半径为 r ($r > R$), 长为 l 的闭合圆柱面 S 为高斯面

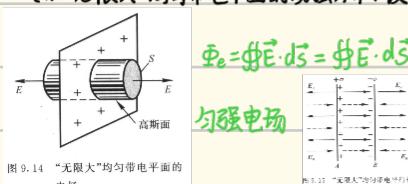
$\therefore \Phi_e = \oint \vec{E} \cdot d\vec{s} = \oint_E \cdot d\vec{s}_{\text{内}} + \oint_E \cdot d\vec{s}_{\text{外}} = \oint_E \cdot d\vec{s}_{\text{外}} = E \cdot 2\pi r l$ 包围的总电量为 $\lambda l \Rightarrow E \cdot 2\pi r l = \frac{\lambda l}{\epsilon_0} \Rightarrow E = \frac{\lambda}{2\pi\epsilon_0 r}$

(ii) 圆柱面内的场强: 包围无电荷 $\Phi_e = \frac{Q}{\epsilon_0} = 0 = \oint \vec{E} \cdot d\vec{s} \Rightarrow E = 0$



求一点的 E , 取极小圆柱高斯面

(4). “无限大”均匀带电平面的场强分布: 设电荷面密度为 σ



$$\Phi_e = \oint \vec{E} \cdot d\vec{s} = \oint \vec{E} \cdot d\vec{s}_{\text{底}} = ES + ES = 2ES = \frac{S\sigma}{\epsilon_0} \Rightarrow E = \frac{\sigma}{2\epsilon_0}$$

平面间 $E = E_a + E_b = \frac{\sigma}{\epsilon_0}$, 外侧场强: $E = E_a - E_b = 0$

图 9.14 “无限大”均匀带电平面的电场

eg

Example 1: spheres

- A solid **conducting** sphere is concentric with a thin **conducting** shell, as shown
- The inner sphere carries a charge Q_1 , and the spherical shell carries a charge Q_2 , such that $Q_2 = 3Q_1$.

A How is the charge distributed on the sphere?

B How is the charge distributed on the spherical shell?

C What is the electric field at $r < R_1$? Between R_1 and R_2 ? At $r > R_2$?

D What happens when you connect the two spheres with a wire? (What are the charges?)

(A) 由于高斯定理, 导体内部无电荷

(B) 内表面: $\sigma_{\text{inner}} = \frac{Q_1}{4\pi R_1^2}$, 外表面: $\sigma_{\text{outer}} = \frac{Q_2 + Q_1}{4\pi R_2^2} = \frac{-2Q_1}{4\pi R_2^2}$ (C) $r < R_1: \vec{E} = 0$ $R_1 < r < R_2: \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{r^2} \hat{r} = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{r^2} \hat{r}$ $r > R_2: \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 + Q_2}{r^2} \hat{r} = -\frac{1}{4\pi\epsilon_0} \frac{2Q_1}{r^2} \hat{r}$

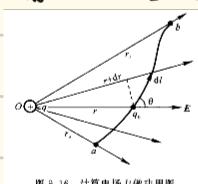
their electric field equation is twice as strong, there is no charge on the inner sphere, and none on the outer surface, so the charge $Q_1 + Q_2$ on the outer surface remains.

Also, for $r < R_1: \vec{E} = 0$.

and for $r > R_2: \vec{E} = -\frac{1}{4\pi\epsilon_0} \frac{2Q_1}{r^2} \hat{r}$

(D)

5. 静电场的环路定理



$$\text{受力 } \vec{F} = q_0 \vec{E} \text{ 微元, 当移动 } d\vec{l} \text{ 时, 所做的元功: } dW = \vec{F} \cdot d\vec{l} = q_0 \vec{E} \cdot d\vec{l} = q_0 E \cos\theta \, dl = q_0 E \, dr = q_0 \frac{q}{4\pi\epsilon_0 r^2} \, dr$$

$$\therefore W = \int dW = \int_{r_a}^{r_b} \frac{q_0 q}{4\pi\epsilon_0 r^2} \, dr = \frac{q_0 q}{4\pi\epsilon_0} \int_{r_a}^{r_b} \frac{1}{r^2} \, dr = \frac{q_0 q}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$$

试验电荷在静止点电荷电场中移动时, 电场力做的功仅与试验电荷电量的大小及其起点和终点位置有关, 与路径无关

⇒ 拓展到任何静电场依旧成立

静电场是保守场 ⇒ 引入势的概念

• 环路定理: $\int_{abc} q_0 \vec{E} \cdot d\vec{l} = \int_{abd} q_0 \vec{E} \cdot d\vec{l}$ $\int_{abc} q_0 \vec{E} \cdot d\vec{l} = - \int_{bda} q_0 \vec{E} \cdot d\vec{l}$ $\Rightarrow \oint \vec{E} \cdot d\vec{l} = 0$ 在静电场中, 电场强度沿任意闭合回路的线积分恒等于0.

$$\nabla \times \vec{E} = 0$$

$$\nabla: \text{微分算子: } \nabla = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k} \quad \nabla \times \vec{E} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix}$$

$$\text{Stokes 公式: } \oint_C q_0 P dx + q_0 dy + q_0 dz = \iint_S \left(\frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k} \right) \cdot d\vec{s} = \iint_S (\nabla \times \vec{E}) \cdot d\vec{s} = 0 \Rightarrow \nabla \times \vec{E} = 0$$

6. 电势能&电势

$$U_a - U_b = \frac{q_0 q_2}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \quad r_a \rightarrow \infty \quad \therefore U(r) = \frac{q_0 q_2}{4\pi\epsilon_0 r} \text{ 结合能}$$

试验电荷 q_0 在静电场中任一给定位置时, 它具有一定的电势能, 若将 q_0 从 a 点移至 b 点, 其间电场力做功等于电荷静电势能增量的负值: $W_{ab} = -(U_b - U_a) = -\Delta U$

确定电势能的绝对值 ⇒ 选取电势能为0的参考点, 无限远处电势能为0 $U_\infty = 0 \Rightarrow U_p = W_{pa} = \int_p^\infty q_0 \vec{E} \cdot d\vec{l}$ q_0 在电场中 P 的电势能 U_p 数值上

$$U = U_{12} + U_{13} + U_{14} + \dots + U_{1N} + U_{23} + U_{24} + \dots + U_{2N} + \dots + U_{N-1N}$$

合能

$$\Rightarrow U = \sum_{i,j} \frac{1}{2} U_{ij}$$

$$\Rightarrow W_{AB} = -\Delta U = \int_A^B \vec{F} \cdot d\vec{l} \Rightarrow \Delta U = U_b - U_a = -\int_A^B q_0 \vec{E} \cdot d\vec{l} \Rightarrow V_b - V_a = -\int_A^B \vec{E} \cdot d\vec{l}$$

$$\text{电势: } V = \frac{U}{q_0} = \frac{q}{4\pi\epsilon_0 r} \quad W_{AB} = \int_A^B \vec{F}_{\text{elec}} \cdot d\vec{l} = -\int_A^B q_0 \vec{E} \cdot d\vec{l} \Rightarrow V_B - V_A = \frac{W_{AB}}{q_0} = -\int_A^B \vec{E} \cdot d\vec{l} \text{ 电势差.}$$

For the more general case, \vec{E} is not uniform.A test charge $q_0 > 0$ \rightarrow

$$W_{ab} = \int_a^b \vec{F} \cdot d\vec{l} = q_0 \int_a^b \vec{E} \cdot d\vec{l}$$

$$\Delta V = V_b - V_a = \frac{U_b - U_a}{q_0} = -\frac{W_{ab}}{q_0} = -\int_a^b \vec{E} \cdot d\vec{l}$$

$$= -\int_a^b \vec{E} \cdot d\vec{l}$$

• If we choose a reference point (for choose a point)

$$r = \infty, V_\infty = 0$$

$$V_p = - \int_{\infty}^p \vec{E} \cdot d\vec{l} = \int_p^{\infty} \vec{E} \cdot d\vec{l}$$

r → ∞ $V_b = 0 \therefore 0 - V_a = - \int_A^B \vec{E} \cdot d\vec{l} \Rightarrow V_a = \int_B^\infty \vec{E} \cdot d\vec{l}$

The electric potential due to point charge

• For a point charge

$$V_b - V_a = \int_a^b \vec{E} \cdot d\vec{l} = \int_a^b \frac{q}{4\pi\epsilon_0 r^2} \, dr = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a} \right)$$

$$V_a - V_b = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$$

$$V_p = \int_p^\infty \vec{E} \cdot d\vec{l}$$

$$V_c - V_a = V_b - V_a = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a} \right)$$

$$\therefore V_c - V_b = 0 \quad (\vec{E} \perp d\vec{l})$$

If we choose $r = \infty, V_\infty = 0$ At any point, the potential: $V = \frac{q}{4\pi\epsilon_0 r}$

electric dipole (-般情况)

Example 1: Electric Dipole

The potential is much easier to calculate than the field since it is an algebraic sum of 2 scalar terms.

$$V(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right) = \frac{q}{4\pi\epsilon_0} \frac{r_2 - r_1}{r_1 r_2}$$

Rewrite this for special case $r > a$:

$$\frac{r_2 - r_1}{r_1 r_2} \approx \frac{a \cos\theta}{r^2} \quad \vec{p}$$

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{2aq \cos\theta}{r^2} = \frac{\vec{p} \cdot \hat{r}}{4\pi\epsilon_0 r^2}$$

$\theta = 90^\circ, V = 0$

$\theta = 0, V_{\max} > 0$

$\theta = 180^\circ, V_{\max} < 0$

Electric dipoles are important in situations other than atomic and molecular ones.

Radio and TV antennas

$$\vec{p} = \vec{p}_0 \cos(\omega t + \phi_0)$$

$$\vec{p} = \vec{p}_0 \cos(\omega t + \phi_0)$$

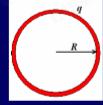
Example 2: (P644, Problem 28-9) Electric quadrupole (电四偶极矩)

Calculate $V(r)$ for the points on the axis of this quadrupole.

For $d \ll r, d^2/r^2 \ll 1$

$V = 2qd^2, \text{ Electric quadrupole moment (电四偶极矩)}$

Example 3 Calculate the electric potential energy and potential of a charged shell.



Solution:

$$\text{From Gauss' Law } E = -\frac{q}{4\pi\epsilon_0 r^2} \quad (r \geq R)$$

The potential

$$V_P > R, V(P) = \int_P^\infty \vec{E} \cdot d\vec{l} = \frac{q}{4\pi\epsilon_0 r_P}$$

$$V_P < R, V(P) = \int_P^R \vec{E} \cdot d\vec{l} + \int_R^\infty \vec{E} \cdot d\vec{l} = 0 + \frac{q}{4\pi\epsilon_0 R} = \frac{q}{4\pi\epsilon_0 R}$$

球壳内部的电势

恒定为 $\frac{q}{4\pi\epsilon_0 R}$

The electric potential energy

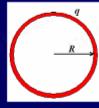
$$U = \sum_{i,j=1}^n \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j \neq i}^n \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

$$= \frac{1}{2} \sum_{i=1}^n q_i V_i$$

$$= \frac{1}{2} \int V dq = \frac{1}{2} \cdot \frac{q}{4\pi\epsilon_0 R} \cdot q$$

$$= \frac{q^2}{8\pi\epsilon_0 R}$$



Estimate the radius R of an electron

$$W = mc^2 = \frac{e^2}{8\pi\epsilon_0 R}$$

$$R = \frac{e^2}{8\pi\epsilon_0 mc^2} \approx 1.4 \times 10^{-15} \text{ m}$$

Example 5:

A circular plastic disk of radius R and the surface charge density s .

$$dq = 2\pi\omega \cdot d\omega \cdot \sigma$$

$$dV = \frac{2\pi\omega \cdot d\omega \cdot \sigma}{4\pi\epsilon_0 \sqrt{z^2 + \omega^2}}$$

$$V = \int_0^R \frac{2\pi\omega \cdot d\omega \cdot \sigma}{4\pi\epsilon_0 \sqrt{z^2 + \omega^2}} = \frac{\sigma}{2\epsilon_0} (\sqrt{z^2 + R^2} - z)$$

$$\text{For } z \gg R \quad V(z) = \frac{\sigma}{2\epsilon_0} (\sqrt{R^2 + z^2} - z) = \frac{\sigma}{2\epsilon_0} \left(\frac{R^2}{z} + \frac{z^2}{2} - z \right)$$

$$= \frac{\sigma}{2\epsilon_0} \left(\frac{R^2}{z} + \frac{z^2}{2} - z \right) = \frac{\sigma}{2\epsilon_0} \frac{R^2}{2z} = \frac{\sigma \cdot R^2}{4\pi\epsilon_0 z}$$

As point charge

Lecture 5, ACT 4

Two charged balls are each at the same potential V . Ball 2 is twice as large as ball 1.

As V is increased, which ball will induce breakdown first?

(a) Ball 1 (b) Ball 2 (c) Same Time

$V_{\text{surface}} = \frac{\sigma}{4\pi\epsilon_0 r^2}, V = \frac{\sigma}{4\pi\epsilon_0 r}$

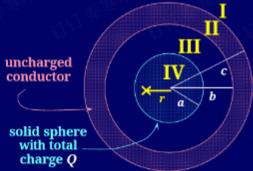
Ex. $V = 100 \text{ kV}$

$$r > 100 \cdot 10^3 \text{ V} \approx 0.03 \text{ m} = 3 \text{ cm}$$

$$3 \cdot 10^4 \text{ V/m}$$

High Voltage Terminals must be big!

Calculate the potential $V(r)$ at the point shown ($r < a$)



$$(1). r > R, V_r = \int_r^\infty \vec{E} \cdot d\vec{l} = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{\infty} \right) = \frac{Q}{4\pi\epsilon_0 R}$$

$$(2). b < r < R, V_r = \int_r^\infty \vec{E} \cdot d\vec{l} = \int_r^b \vec{E} \cdot d\vec{l} + \int_b^R \vec{E} \cdot d\vec{l} = \int_b^\infty \vec{E} \cdot d\vec{l} = \frac{Q}{4\pi\epsilon_0 R}$$

$$(3). a < r < b, V_r = \int_r^\infty \vec{E} \cdot d\vec{l} = \int_r^a \vec{E} \cdot d\vec{l} + \int_a^b \vec{E} \cdot d\vec{l} + \int_b^\infty \vec{E} \cdot d\vec{l} = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{a} \right) + \frac{Q}{4\pi\epsilon_0} \cdot \frac{1}{b} = \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{r} - \left(\frac{1}{a} - \frac{1}{b} \right) \right]$$

$$(4). r < a, V_r = \int_r^\infty \vec{E} \cdot d\vec{l} = \int_r^a \vec{E} \cdot d\vec{l} + \int_a^b \vec{E} \cdot d\vec{l} + \int_b^R \vec{E} \cdot d\vec{l} + \int_R^\infty \vec{E} \cdot d\vec{l} = \frac{Q}{4\pi\epsilon_0} \cdot \left(\frac{1}{a} - \frac{1}{b} \right) + \frac{Q}{4\pi\epsilon_0} \cdot \frac{1}{c} + \int_r^a \vec{E} \cdot d\vec{l}$$

$$r \gg a: \frac{r^3}{a^3} = \frac{Q}{a^3} \Rightarrow Q = \frac{r^3}{a^3} Q \quad \therefore \oint \vec{E} \cdot d\vec{A} = \vec{E} \cdot 4\pi r^2 = \frac{Q}{a^2} \Rightarrow E = \frac{rQ}{4\pi\epsilon_0 a^3}$$

$$= \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} + \frac{1}{c} \right)$$

$$+ \frac{Q}{4\pi\epsilon_0 a} \cdot \frac{1}{2} (1 - \frac{r^2}{a^2})$$

• Equipotentials (等势面): The locus of points with the same potential.

Example: for a point charge, the equipotentials are spheres centered on the charge.

The electric field is always perpendicular to an equipotential surface!

Why?? $V_x - V_y = -\int \vec{E} \cdot d\vec{l}$

Along the surface, there is NO change in V (it's an equipotential!)

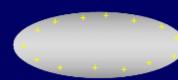
Therefore, $-\int \vec{E} \cdot d\vec{l} = \Delta V = 0$

We can conclude then, that $\vec{E} \cdot d\vec{l}$ is zero.

If the dot product of the field vector and the displacement vector is zero, then these two vectors are perpendicular, or the electric field is always perpendicular to the equipotential surface.

Electric Dipole Equipotentials

First, let's take a look at the equipotentials:



Claim

The surface of a conductor is always an equipotential surface (in fact, the entire conductor is an equipotential).

Why??

If surface were not equipotential, there would be an electric field component parallel to the surface and the charges would move!!

1) The two conductors are now connected by a wire. How do the potentials at the conductor surfaces compare now?

a) $V_A > V_B$ b) $V_A = V_B$ c) $V_A < V_B$

2) What happens to the charge on conductor A after it is connected to conductor B?

a) Q_A increases
b) Q_A decreases
c) Q_A doesn't change

$\frac{Q_A}{4\pi\epsilon_0 r_A} = \frac{Q_B}{4\pi\epsilon_0 r_B}$
 $\frac{Q_A}{Q_B} = \frac{r_A}{r_B}$

电荷均匀分布于表面, 等势, $V_A = V_B$

Chapter 28, ACT 1

1A An uncharged spherical conductor has a weirdly shaped cavity carved out of it. Inside the cavity is a charge $-q$.

How much charge is on the cavity wall?

(a) Less than $-q$ (b) Exactly $-q$ (c) More than $-q$

1B How is the charge distributed on the cavity wall?

(a) Uniformly
 (b) More charge closer to $-q$
(c) Less charge closer to $-q$

1C How is the charge distributed on the outside of the sphere?

(a) Uniformly
(b) More charge near the cavity
(c) Less charge near the cavity

Corona Discharged (尖端放电)

- How is the charge distributed on a non-spherical conductor?? Claim largest charge density at smallest radius of curvature.
- 2 spheres, connected by a wire, "far" apart
- Both at same potential

$$\frac{Q_s}{4\pi\epsilon_0 r_s^2} \approx \frac{Q_t}{4\pi\epsilon_0 r_t^2} \Rightarrow \frac{Q_s}{Q_t} \approx \frac{r_s}{r_t}$$

But: $\sigma_s = \frac{(Q_s/r_s^2)}{(Q_t/r_t^2)}$
 $\sigma_t = \frac{Q_t}{4\pi r_t^2}$

$$\frac{\sigma_s}{\sigma_t} = \frac{r_s}{r_t} \quad \Downarrow \quad \frac{\sigma_s}{\sigma_t} = \frac{r_s}{r_t} \quad \text{Smaller sphere has the larger surface charge density!}$$

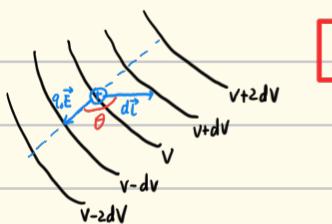
$$V \Rightarrow \vec{E} \quad \vec{E} \rightarrow V, \quad V_p = \int_p^{\infty} \vec{E} \cdot d\vec{l}$$

$$V \Rightarrow \vec{E}?$$

1. Graphically (图形法)

From equipotential surfaces
⇒ draw lines of forces.

Describe the behavior of E



$$dW = -q_0 dV$$

$$dW = \vec{F} \cdot d\vec{l} = q_0 \vec{E} \cdot d\vec{l} = q_0 E dl \cos\theta$$

$$\therefore -q_0 dV = q_0 E dl \cos\theta \Rightarrow E \cos\theta = -\frac{dV}{dl} \Rightarrow E_l = -\frac{dV}{dl}$$

The negative rate of change of the potential with position in any direction is component of \vec{E} in that direction.

$$E = -\left(\frac{dV}{dl}\right)_{\max}$$

$$\theta = 0$$

In the direction \vec{n}
The maximum value of $\frac{dV}{dl}$ at a given point is called the potential gradient (梯度) at that point.
Corresponds to the direction of \vec{E}

- We can obtain the electric field \vec{E} from the potential V by inverting our previous relation between \vec{E} and V :

$E_x = -\frac{\partial V}{\partial x}$	$E_y = -\frac{\partial V}{\partial y}$	$E_z = -\frac{\partial V}{\partial z}$
--	--	--

$$\vec{V} = \vec{r} + \hat{x}dx \quad dV = -\vec{E} \cdot \hat{x}dx = -E_x dx$$

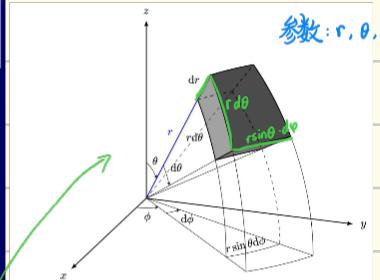
- Expressed as a vector, \vec{E} is the negative gradient of V

$$\vec{E} = -\vec{\nabla} V$$

- Cartesian coordinates:

$$\vec{\nabla} V = \frac{\partial V}{\partial x} \hat{x} + \frac{\partial V}{\partial y} \hat{y} + \frac{\partial V}{\partial z} \hat{z}$$

- Spherical coordinates:

$$\vec{\nabla} V = \frac{\partial V}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta} + \frac{1}{r \sin\theta} \frac{\partial V}{\partial \phi} \hat{\phi}$$


- Consider the following electric potential:

$$V(x, y, z) = 3x^2 + 2xy - z^2$$

- What electric field does this describe?

$$E_x = -\frac{\partial V}{\partial x} = -6x - 2y \quad E_y = -\frac{\partial V}{\partial y} = -2x \quad E_z = -\frac{\partial V}{\partial z} = 2z$$

- ... expressing this as a vector:

$$\vec{E} = (-6x - 2y) \hat{x} - 2x \hat{y} + 2z \hat{z}$$

- Something for you to try:

Example 1 Electric Dipole

The potential is much easier to calculate than the field since it is an algebraic sum of 2 scalar terms.

$$V(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right) = \frac{q}{4\pi\epsilon_0} \frac{r_2 - r_1}{r_1 r_2}$$

Rewrite this for special case $r \gg a$:

$$r_1 r_2 \approx r^2 \quad \vec{P} \quad V(r) = \frac{1}{4\pi\epsilon_0} \frac{2aq \cos\theta}{r^2}$$

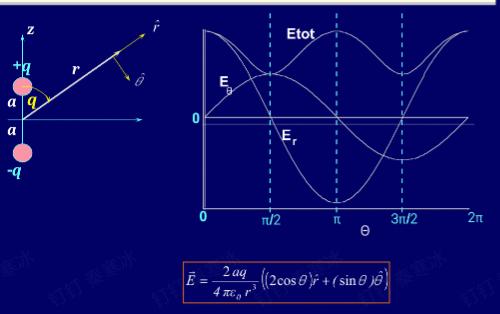
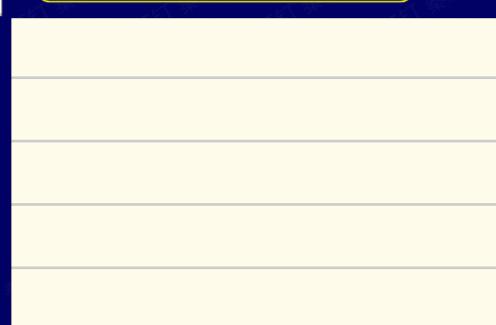
Now we can use this potential to calculate the \vec{E} field of a dipole (after a picture)

(remember how messy the direct calculation was?)

$$\Rightarrow V(r, \theta) = \frac{1}{4\pi\epsilon_0} \cdot \frac{2aq \cos\theta}{r^2}$$

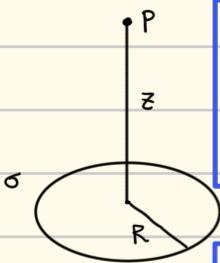
$$\Rightarrow E_r = -\frac{\partial V}{\partial r} = -\frac{2aq}{4\pi\epsilon_0 r^3} \cdot (-2\cos\theta)$$

$$E_\theta = -\frac{1}{r} \frac{\partial V}{\partial \theta} = -\frac{2aq}{4\pi\epsilon_0 r^3} \left(\frac{-\sin\theta}{r} \right)$$



eg.

求P处的场强.



①. 一环: $dq = \sigma \cdot 2\pi r dr$ $\cos\theta = \frac{z}{\sqrt{z^2+r^2}}$
 $\therefore dE = \frac{dq}{4\pi\epsilon_0(z^2+r^2)^{3/2}} \cdot \cos\theta = \frac{2\pi\epsilon_0 r dr}{4\pi\epsilon_0(z^2+r^2)^{3/2}}$
 $\Rightarrow E = \int dE = \int_0^R \frac{\pi z \sigma d(z^2+r^2)}{4\pi\epsilon_0(z^2+r^2)^{3/2}} = \int_0^R \frac{z\sigma}{4\epsilon_0(z^2+r^2)^{1/2}} d(z^2+r^2) = \frac{z\sigma}{4\epsilon_0} \cdot [-2 \cdot (z^2+r^2)^{-1/2}] \Big|_0^R = \frac{z\sigma}{2\epsilon_0} \left[\frac{1}{z} - \frac{1}{\sqrt{z^2+R^2}} \right] = \frac{\sigma}{2\epsilon_0} \left(1 - \frac{1}{\sqrt{1+(R/z)^2}} \right)$

②. $dq = \sigma \cdot 2\pi r dr$ $\therefore dV = \frac{\sigma \cdot 2\pi r dr}{4\pi\epsilon_0} \cdot \frac{1}{\sqrt{z^2+r^2}} = \frac{\sigma r dr}{2\epsilon_0(z^2+r^2)}$ $V = \int_0^R dV = \frac{\sigma}{2\epsilon_0} (\sqrt{z^2+R^2} - z)$
 $\therefore E_z = -\frac{\partial V}{\partial z} = -\frac{\sigma}{2\epsilon_0} \left(\frac{2z}{2\sqrt{z^2+R^2}} - 1 \right) = \frac{\sigma}{2\epsilon_0} \left(1 - \frac{1}{\sqrt{1+(R/z)^2}} \right)$

28-7 The Electrostatic Accelerator (P₆₅₁, 静电加速器)

Nuclear reactions: How to get large velocity \vec{v}
One method is based on an electrostatic technique.

The positive charge q obtain the kinetic energy
 $K = -\Delta U = -q\Delta V > 0$
 $= q(V_a - V_b)$
 $= \frac{1}{2}mv^2$
 $v = \sqrt{\frac{2q(V_a - V_b)}{m}}$

Nuclear: $K \approx MeV(10^6 V)$

$$V_B - V_A = \frac{W_{AB}}{q} \quad V_B - V_A = - \int_A^B \vec{E} \cdot d\vec{l} \quad V_A - V_B = \int_A^B \vec{E} \cdot d\vec{l}$$

电容器 $C = \frac{q}{\Delta V}$
Analogy with Fluid Flow

 $p = \frac{nRT}{v}$
 $n = \frac{V}{RT}$, p
 $q = CV$
Capacitance (电容)

Example 1: Parallel Plate Capacitor (平行板电容器)
Calculate the capacitance. We assume +q, -q charge on each plate with potential difference ΔV :
 $C = \frac{q}{\Delta V}$
Need q : $q = \sigma \cdot A$
Need ΔV : from def'n:
- Use Gauss' Law to find E

而平行板电容器电场 $E = \frac{\sigma}{\epsilon_0}$

$\therefore E = \frac{\sigma}{\epsilon_0} = \frac{q}{A\epsilon_0}$ $\Delta V = V_A - V_B = \frac{q}{A\epsilon_0} d$
 $C = \frac{q}{\Delta V} = \frac{q}{V_B - V_A} = \frac{\epsilon_0 A}{d}$

Summary
A Capacitor is an object with two spatially separated conducting surfaces.
The definition of the capacitance of such an object is:
 $C = \frac{Q}{V}$
The capacitance depends on the geometry:

Parallel Plates: $C = \frac{\epsilon_0 A}{d}$
Cylindrical: $C = \frac{2\pi\epsilon_0 L}{\ln \frac{b}{a}}$
Spherical: $C = 4\pi\epsilon_0 \frac{ab}{b-a}$

Example 2: Cylindrical Capacitor (圆柱形电容器)

Calculate the capacitance:
Assume +Q, -Q on surface of cylinders with potential difference V .

$a < r < b$ 时的 E : $E \cdot 2\pi r L = \frac{Q}{\epsilon_0} \Rightarrow E = \frac{Q}{2\pi\epsilon_0 r L}$

$\therefore \Delta V = - \int_a^b \vec{E} \cdot d\vec{l} = \int_a^b \vec{E} \cdot d\vec{l} = \int_a^b \frac{Q}{2\pi\epsilon_0 r L} dr = \frac{Q}{2\pi\epsilon_0 L} \ln \left(\frac{b}{a} \right)$ $\therefore C = \frac{Q}{\Delta V} = \frac{2\pi\epsilon_0 L}{\ln(b/a)}$

Example 3 A Spherical Capacitor (球形电容器)

$\vec{E} = \frac{q\vec{r}}{4\pi\epsilon_0 r^2}$, $a < r < b$
 $\Delta V = \int_a^b \vec{E} \cdot d\vec{l}$
 $= \int_a^b \frac{qdr}{4\pi\epsilon_0 r^2}$
 $= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$
 $C = q/\Delta V = 4\pi\epsilon_0 \frac{ab}{b-a}$

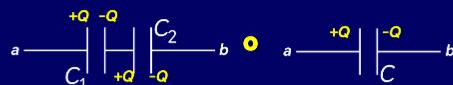
当 $b \rightarrow \infty$ 时, $\Delta V = \frac{q}{4\pi\epsilon_0 a} \cdot \frac{1}{a}$ $\therefore C = \frac{q}{\Delta V} = 4\pi\epsilon_0 a$ \Rightarrow 一个导体也是电容器

$C = 4\pi\epsilon_0 a$

Example:
What is the capacitance of the Earth, viewed as an isolated conducting sphere of radius $R = 6370 \text{ km}$?

$C = 4\pi\epsilon_0 R \approx 4 \cdot 3.14 \cdot (8.85 \cdot 10^{-12} \text{ F/m}) \cdot 6.37 \cdot 10^6 \text{ m}$
 $\approx 7.1 \cdot 10^{-4} \text{ F} = 710 \mu\text{F}$

Capacitors in Series (串联)



- Find "equivalent" capacitance C in the sense that no measurement at a, b could distinguish the above two situations.
- Aha! The voltage across the two is the same....

Parallel Combination: $V = \frac{Q_1}{C_1} = \frac{Q_2}{C_2} \Rightarrow Q_2 = Q_1 \frac{C_2}{C_1}$

Equivalent Capacitor: $C \equiv \frac{Q}{V} = \frac{Q_1 + Q_2}{V} = \frac{Q_1(C_1 + C_2)}{C_1 V}$

$\Rightarrow C = C_1 + C_2$

并联:

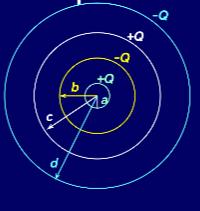
 $C_{12} = C_1 + C_2$

$C_{12} = C_1 + C_2$

$C = \frac{C_3 C_{12}}{C_3 + C_{12}} = \frac{C_3(C_1 + C_2)}{C_1 + C_2 + C_3}$

RHS: $V_{ab} = \frac{Q}{C}$
LHS: $V_{ab} = V_1 + V_2 = \frac{Q}{C_1} + \frac{Q}{C_2}$ $\Rightarrow \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

Appendix: Another example



- Suppose we have 4 concentric cylinders (圆柱) of radii a, b, c, d and charges $+Q, -Q, +Q, -Q$ at $r = a, b, c, d$
- Question: What is the capacitance between a and d ?
- Note: E -field between b and c is zero! Why??
A cylinder of radius r : $b < r < c$ encloses zero charge!

$$V_{ad} = \int_a^b \frac{Q \, dr}{2\pi\epsilon_0 r L} + 0 + \int_c^d \frac{Q \, dr}{2\pi\epsilon_0 r L} = \frac{Q}{2\pi\epsilon_0 L} \left[\ln\left(\frac{b}{a}\right) + \ln\left(\frac{d}{c}\right) \right]$$

$$\therefore C = \frac{Q}{V_{ad}} = \frac{2\pi\epsilon_0 L}{\ln\left(\frac{b}{a}\right) + \ln\left(\frac{d}{c}\right)}$$

30-2 Energy storage in electric field

- How much energy is stored in a charged capacitor?
- Calculate the work provided (usually by a battery) to charge a capacitor to $+/- Q$:

Calculate incremental work dW needed to add charge dq to capacitor at voltage V (there is a trick here!):

$$dW = V(q) \cdot dq = \left(\frac{q}{C}\right) \cdot dq$$

- The total work W to charge to Q is then given by:

$$W = \frac{1}{C} \int_0^Q q \, dq = \frac{1}{2} \frac{Q^2}{C}$$

Look at this! Two ways to write W

- In terms of the voltage V :

$$W = \frac{1}{2} CV^2$$

总功等于储存在电容器里面的能量

$$W = U = \frac{1}{2} CV^2$$

$$\text{能量密度 } u = \frac{U}{V^2} = \frac{1}{2} \frac{CV^2}{A \cdot d}$$

$$= \frac{1}{2} \cdot \frac{A\epsilon_0}{d} V^2 = \frac{1}{2} \cdot \frac{\epsilon_0 V^2}{d^2} = \frac{1}{2} \epsilon_0 E^2$$

Where is the Energy Stored?

Claim: energy is stored in the electric field itself. Think of the energy needed to charge the capacitor as being the energy needed to create the field.

To calculate the energy density in the field, first consider the constant field generated by a parallel plate capacitor, where

$$\text{Diagram of a parallel plate capacitor with charges } +Q \text{ and } -Q. \quad U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{Q^2}{2(A\epsilon_0/d)}$$

This is the energy density, u , of the electric field...

The electric field is given by:

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A} \Rightarrow U = \frac{1}{2} E^2 \epsilon_0 A d$$

The energy density u in the field is given by:

$$u = \frac{W}{\text{volume}} = \frac{W}{Ad} = \frac{1}{2} \epsilon_0 E^2 \quad \text{Units: } \frac{\text{J}}{\text{m}^3}$$

Energy Density

Claim: the expression for the energy density of the electrostatic field

$$u = \frac{1}{2} \epsilon_0 E^2 \quad \text{普遍!}$$

is general and is not restricted to the special case of the constant field in a parallel plate capacitor.

Example (and another exercise for the student!)

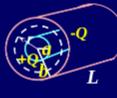
- Consider E -field between surfaces of cylindrical capacitor:

Calculate the energy in the field of the capacitor by integrating the above energy density over the volume of the space between cylinders.

$$U = \frac{1}{2} \epsilon_0 \int E^2 dv = \frac{1}{2} \epsilon_0 \int \left(\frac{\lambda}{2\pi\epsilon_0 r}\right)^2 L 2\pi r dr = \frac{1}{2} \frac{Q^2}{2\pi\epsilon_0 L} \ln\left(\frac{b}{a}\right) = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2$$

- Compare this value with what you expect from the general expression:

$$U = \frac{1}{2} CV^2 \quad \text{普遍}$$



Chapter 30, ACT 2

- Consider two cylindrical capacitors, each of length L .

- C_1 has inner radius a and outer radius b .
- C_2 has inner radius $2a$ and outer radius $2b$.

If both capacitors are given the same amount of charge, what is the relation between U_1 , the energy stored in C_1 , and U_2 , the energy stored in C_2 ?

(Hint: what is the relationship between C_1 and C_2 ?)

$$(a) U_2 < U_1$$

$$(b) U_2 = U_1$$

$$(c) U_2 > U_1$$

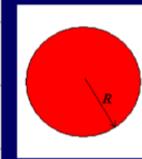
$$U = \frac{1}{2} CV^2$$

$$C = \frac{2\pi\epsilon_0 L}{\ln\left(\frac{b}{a}\right)} \Rightarrow C_1 = C_2$$

$$V = \frac{Q}{C} \Rightarrow V_1 = V_2$$

$$\therefore U_1 = U_2$$

Problem 30-7 (page 687). An isolated conducting sphere whose radius R is 6.85 cm carries a charge $q = 1.25 \text{ nC}$. (a) How much energy is stored in the electric field of this charged conductor? (b) What is the energy density (能量密度) at the surface of the sphere? (c) What is the radius R_0 of the imaginary spherical surface such that one-half of the stored potential energy lies within it?



$$R = 6.85 \text{ cm}, q = 1.25 \text{ nC}$$

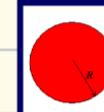
$$(a) U = ?$$

$$(b) u = ? \text{ (at the surface of the sphere)}$$

$$(c) R_0 = ? \text{ At } R < R_0, U = 1/2 U$$

$$\text{Solution: (a)} \quad C = 4\pi\epsilon_0 R \quad U = \frac{q^2}{2C} = \frac{q^2}{8\pi\epsilon_0 R} = 1.03 \times 10^{-7} \text{ J} = 103 \text{ nJ}$$

$$E = \frac{q}{4\pi\epsilon_0 R^2} \quad u = \frac{1}{2} \epsilon_0 E^2 = \frac{1}{2} \epsilon_0 \frac{q^2}{16\pi^2 \epsilon_0^2 R^4} = \frac{q^2}{32\pi^2 \epsilon_0^2 R^4} = 25.4 \text{ nJ/cm}^3$$



$$(c) R = R_0 \quad U(r \leq R_0) = U(r \geq R_0)$$

$$\int_R^{R_0} \frac{1}{2} \epsilon_0 E^2 dv = \int_0^{R_0} \frac{1}{2} \epsilon_0 E^2 dv$$

$$\int_R^{R_0} \frac{1}{2} \epsilon_0 \frac{q^2}{16\pi^2 \epsilon_0^2 r^4} 4\pi r^2 dr = \int_0^{R_0} \frac{1}{2} \epsilon_0 \frac{q^2}{16\pi^2 \epsilon_0^2 r^4} 4\pi r^2 dr$$

$$\int_R^{R_0} \frac{dr}{r^2} = \int_0^{R_0} \frac{dr}{r^2}$$

$$\frac{1}{R} - \frac{1}{R_0} = \frac{1}{R_0}$$

$$R_0 = 2R = 13.7 \text{ cm}$$

(电介质, 电场中的绝缘体)

1. Capacitor with dielectrics

Empirical observation:

Inserting a non-conducting material (绝缘体) between the plates of a capacitor changes the VALUE of the capacitance.

Definition:

The dielectric constant (介电常数) of a material is the ratio of the capacitance when filled with the dielectric to that without it:

$$C = K_e C_0 \quad \text{对应中文教材的 } \epsilon_r \text{ 相对介电常数}$$

- K_e values are always > 1 (e.g., glass = 5.6; water = 78)
- They INCREASE the capacitance of a capacitor (generally good, since it is hard to make "big" capacitors)
- They permit more energy to be stored on a given capacitor than otherwise with vacuum (i.e., air)

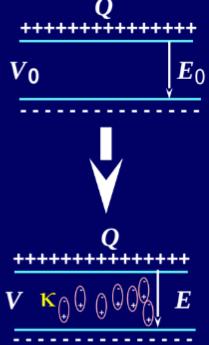
Parallel Plate Example I (Q is constant)

- Deposit a charge Q on parallel plates filled with vacuum (air)—capacitance C_0 .
- The potential difference is $V_0 = Q / C_0$.
- Now insert material with dielectric constant κ_e (介电常数).
 - Charge Q remains constant
 - Capacitance increases $C = \kappa_e C_0$
 - Voltage decreases from V_0 to:

$$V = \frac{Q}{C} = \frac{Q}{\kappa_e C_0} = \frac{V_0}{\kappa_e}$$

- Electric field decreases also:

$$E = \frac{V}{d} = \frac{V_0}{d \kappa_e} = \frac{E_0}{\kappa_e}$$



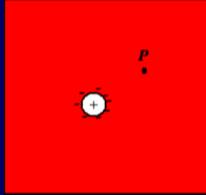
After introducing κ_e

- For a parallel-plate capacitor:
- For a cylindrical capacitor:
- For a spherical capacitor:

$$C = \frac{\kappa_e \epsilon_0 A}{d}$$

$$C = \kappa_e \frac{2\pi \epsilon_0 L}{\ln(b/a)}$$

$$C = 4\pi \epsilon_0 \kappa_e \frac{ab}{b-a}$$

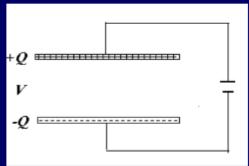
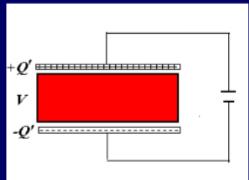


$$E = \frac{Q}{4\pi \epsilon_0 \kappa_e R^2}$$

Parallel Plate Example II (V is constant)

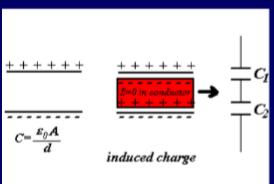
- A charge Q on parallel plates filled with vacuum (air) and with the battery connected —capacitance C_0 .
- The charge $Q = C_0 V$.
- Now insert material with dielectric constant κ_e .
- The voltage remains constant
- Capacitance increases $C = \kappa_e C_0$
- Charge increases from Q to:

$$Q' = \kappa_e C_0 V$$



How to understand the increase of C : (Macroscopic 宏观理解)

- The presence of conductor in a capacitor



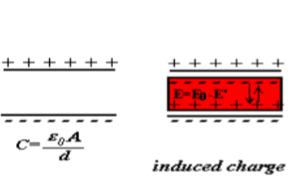
The redistribution of charge in a C

$$C_1 = \frac{\epsilon_0 A}{d_1}$$

$$C_2 = \frac{\epsilon_0 A}{d_2}$$

$$C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\epsilon_0 A}{d_1 + d_2} > \frac{\epsilon_0 A}{d} \quad (d_1 + d_2 < d)$$

- The presence of a dielectrics



Polarization (极化)

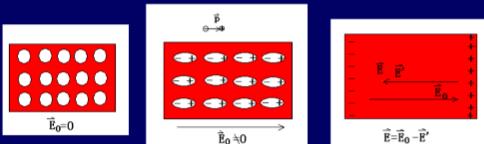
$$V = Ed = (E_0 - E')d < E_0 d$$

$$C = \frac{q}{Ed} = \frac{q}{(E_0 - E')d} > C_0$$

极化的微观机理: 无极分子电介质: $p = qd = 0$ H_2N_2 , CCl_4
有极分子电介质: $p = qd \neq 0$ H_2O

The non-polar dielectrics (无极分子电介质):

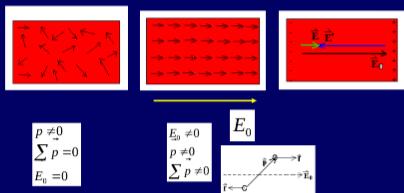
in an electric field



Induced electric dipole moment (感生电偶极矩)

Electric displacement polarization (电子位移极化)

Polar dielectrics (有极分子电介质) in an electric field



Alignment polarization (取向极化)

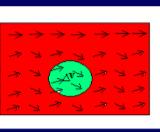
- Notes: In high frequency field, Electric displacement polarization (电子位移极化) plays an important role.

Polarization (极化强度矢量 \mathbf{P})

- Definition

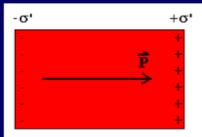
In the volume of ΔV

$$\sum \vec{p} \neq 0 \quad \vec{P} = \frac{\sum \vec{p}}{\Delta V} \quad \text{ps. } \vec{P} \text{—一定沿 } \vec{E} \text{ 方向; } \vec{p} \text{ 不一定!}$$



• Relationship between \vec{P} and σ

For uniform dielectrics

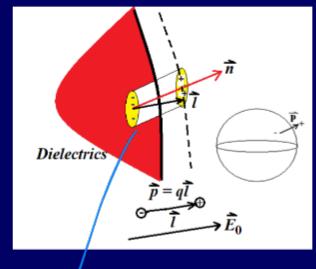


The induced charge distributes only on the surface of dielectrics.

For displacement polarization (位移极化)

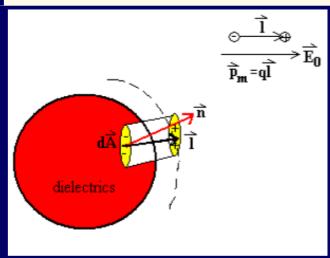
Consider the positive induced charge through area dA due to polarization.

$$\vec{P} = \frac{\sum p_m}{\Delta V} = nql$$



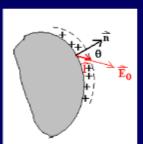
n , the number of molecular per unit volume

$$\begin{aligned} dN &= ndV = nldA \cos \theta \\ dq' &= qdN = nql dA \cos \theta \\ &= P dA \cos \theta \\ &= \vec{P} \cdot d\vec{A} \\ \oint P \cdot dA &= \sum_{out} q' = - \sum_{in} q' \end{aligned}$$

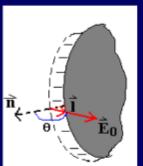


$$dq' = P \cdot dA = P \cos \theta \cdot dA$$

$$\sigma' = \frac{dq'}{dA} = P \cos \theta = P \cdot n = P_n$$



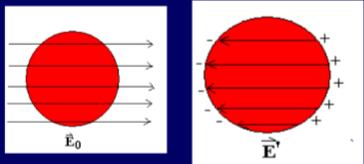
$$\theta < \frac{\pi}{2}, \sigma'_e > 0, +$$



$$\theta > \frac{\pi}{2}, \sigma'_e < 0, -$$

取小长度, 内部全为正电荷

4. Depolarization Field (退极化场)



$$E = E_0 + E'$$

Depolarization field E'

At some place, E', E_0 in the same direction.

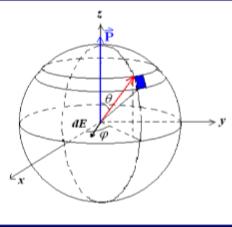
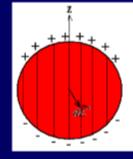
At another place, E', E_0 in the opposite direction

Example 1

A spherical dielectrics, uniform polarization \vec{P}

$$\sigma'_e = P \cos \theta$$

Calculating the depolarization field E' (退极化场) at center.



$$\begin{aligned} \sigma'_e &= P_n = P \cos \theta \\ dE' &= \frac{dq'}{4\pi\epsilon_0 R^2} = \frac{\sigma'_e dA}{4\pi\epsilon_0 R^2} = \frac{P \cos \theta dA}{4\pi\epsilon_0 R^2} \\ dA &= Rd\theta \cdot R \sin \theta d\vartheta d\varphi \\ &= R^2 \sin \theta d\theta d\varphi \end{aligned}$$

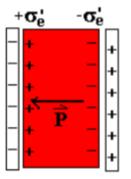
$$dE' = \frac{P}{4\pi\epsilon_0} \cos \theta \sin \theta d\theta d\varphi$$

$$dE'_z = dE' \cos(\pi - \theta) = -dE' \cos \theta$$

$$= -\frac{P}{4\pi\epsilon_0} \cos^2 \theta \sin \theta d\theta d\varphi$$

$$E'_z = \oint \oint dE'_z = -\frac{P}{4\pi\epsilon_0} \int \cos^2 \theta \sin \theta d\theta \int d\varphi = -\frac{P}{3\epsilon_0}$$

e.g. Parallel plate



$$\sigma'_e = P \cos \theta = P$$

$$E' = \frac{\sigma'_e}{\epsilon_0}$$

5. Polarization law of dielectrics (电介质的极化规律)

$$P \Rightarrow \sigma'_e \Rightarrow E' \Rightarrow E$$

$P(E)$ function

For different materials, $P(E)$ different and complicated, which is determined by an experiment result.

• For some crystal materials (anisotropic, 如 SiO_2 晶体水晶等)

$$\begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix} = \begin{bmatrix} \chi_{xx} \chi_{xy} \chi_{xz} \\ \chi_{yx} \chi_{yy} \chi_{yz} \\ \chi_{zx} \chi_{zy} \chi_{zz} \end{bmatrix} \begin{bmatrix} \epsilon_0 E_x \\ \epsilon_0 E_y \\ \epsilon_0 E_z \end{bmatrix}$$

张量

$$P_x = \chi_{xx} \epsilon_0 E_x + \chi_{xy} \epsilon_0 E_y + \chi_{xz} \epsilon_0 E_z$$

$$P_y = \chi_{yx} \epsilon_0 E_x + \chi_{yy} \epsilon_0 E_y + \chi_{yz} \epsilon_0 E_z$$

$$P_z = \chi_{zx} \epsilon_0 E_x + \chi_{zy} \epsilon_0 E_y + \chi_{zz} \epsilon_0 E_z$$

$$\begin{aligned} \sigma'_e &= \vec{P} \cdot \vec{n} = P \cos \theta \\ \vec{P} &= \frac{\sum \vec{P}_n}{\Delta V} = nq \vec{l} \end{aligned}$$

χ_e : Polarization coefficient (极化率)

$$\kappa_e = 1 + \chi_e$$

6. Electric Displacement Vector \vec{D} (电位移矢量)

and Gauss' Law with Dielectrics.

In dielectrics: $E \neq 0$

$$E_0 \rightarrow P \rightarrow \sigma'_e \rightarrow E' \rightarrow E = E_0 + E'$$

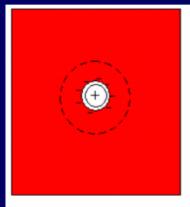
very complicated

Induce a new physical quantity:

D

Electric Displacement Vector (电位移矢量)
Or Electric Induction Vector (电感应矢量)

Electric Displacement Vector \vec{D}



$$\begin{aligned} \varepsilon_0 \oint \vec{E} \bullet d\vec{A} &= \sum_{in} (q_0 + q') \\ \oint \vec{P} \bullet d\vec{A} &= -\sum_{in} q' \\ \oint \varepsilon_0 \vec{E} \bullet d\vec{A} &= \sum_{in} q_0 - \oint \vec{P} \bullet d\vec{A} \\ \oint (\varepsilon_0 \vec{E} + \vec{P}) \bullet d\vec{A} &= \sum_{in} q_0 \\ \oint \vec{D} \bullet d\vec{A} &= \sum_{in} q_0 \end{aligned}$$

$$\oint \vec{D} \bullet d\vec{A} = \sum_{in} q_0$$

Gauss Law in the dielectrics

此处 q' 为极化的电荷, 因此 q_0 为自由电荷!

Electric Displacement Vector (电位移矢量)

$$\begin{aligned} \vec{D} &= \varepsilon_0 \vec{E} + \vec{P} \\ &= \varepsilon_0 \vec{E} + \chi_e \varepsilon_0 \vec{E} \\ &= (1 + \chi_e) \varepsilon_0 \vec{E} \\ &= \kappa_e \varepsilon_0 \vec{E} \end{aligned}$$

κ_e Dielectric constant (介电常数)

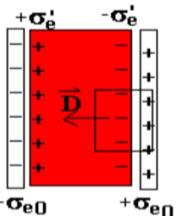
χ_e Polarization Coefficient (极化率)

$$\kappa_e = 1 + \chi_e$$

$$\vec{P} = \chi_e \varepsilon_0 \vec{E}$$

$$\oint \vec{D} \bullet d\vec{A} = \sum_{ins} q_0$$

• Example 1



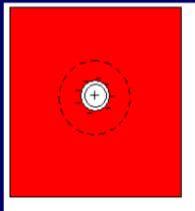
$$\begin{aligned} \oint \vec{P} \bullet d\vec{A} &= \sum q_0 \\ D_1 \Delta A + D_2 \Delta A &= \sigma_{e0} \Delta A \\ E_1 = 0, D_1 &= \kappa_{e1} \varepsilon_0 E_1 = 0, \therefore D_1 = 0 \\ \therefore D &= D_2 = \sigma_{e0} = \varepsilon_0 E_0 \\ \therefore E &= \frac{D}{\kappa_e \varepsilon_0} = \frac{\varepsilon_0 E_0}{\kappa_e \varepsilon_0} = \frac{E_0}{\kappa_e} \end{aligned}$$

In conductor

$$D = \varepsilon_0 E + P = \kappa_e \varepsilon_0 E$$

Example 2

$$D = \varepsilon_0 E + P = \kappa_e \varepsilon_0 E$$



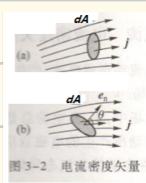
$$\begin{aligned} \oint \vec{D} \bullet d\vec{A} &= \sum q_0 \\ 4\pi r^2 D &= q_0 \\ D &= \frac{q_0}{4\pi r^2} \\ E &= \frac{D}{\kappa_e \varepsilon_0} = \frac{q_0}{4\pi \varepsilon_0 \kappa_e r^2} = \frac{E_0}{\kappa_e} \end{aligned}$$

Note:

$$\oint E \bullet dl = 0, \text{ but } \oint D \bullet dl \neq 0 \text{ Why?}$$

· 电流强度 : $i = \lim_{\Delta t \rightarrow 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$

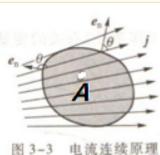
电流密度矢量 : j



$$di = j \cdot dA$$

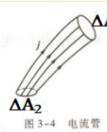
$$i = \iint_A j \cdot dA = \iint_A j \cos\theta dA$$

· 电流连续方程



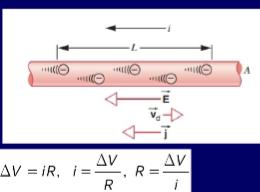
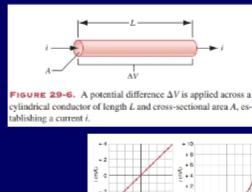
· 电流场 : $\oint_A j \cdot dA = -\frac{dq}{dt}$

恒定电流条件 : $\oint_A j \cdot dA = 0 \Rightarrow j_1 \Delta A_1 = j_2 \Delta A_2$ 无电荷积累
(电流稳定的条件)



3. Ohm Law, Resistance, & Resistivity (欧姆定律, 电阻, 电阻率)

· Ohm Law



Metal, liquid containing acid, alkali, salt....., linear devices (线性元件)

Evacuated tube (电子管), transistor (PN结)....., nonlinear devices (非线性元件)

Conductance (电导) $G = \frac{1}{R}$ Unit: 电阻: 欧姆(Ω). 电导: 西门子(S);

微分电阻 $R = \frac{dV}{di}$

Resistivity, & conductivity (电阻率和电导率)

$$R = \rho \frac{L}{A}$$

$$\rho: \text{resistivity}$$

$$\sigma = \frac{1}{\rho}, \text{ conductivity}$$

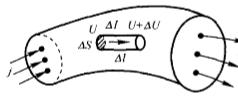
$$R = \int \rho \frac{dl}{A}$$

表3-1 几种金属、合金和塑料的ρ, σ (Ω·m)		
铝	$\rho = 2.8 \times 10^{-8}$	$\sigma = 3.6 \times 10^7$
铜	1.6×10^{-8}	6.3×10^7
金	2.5×10^{-8}	4.7×10^7
银	1.6×10^{-8}	6.3×10^7
铂	7.2×10^{-8}	1.3×10^7
镍	9.8×10^{-8}	5.9×10^7
铁	9.6×10^{-8}	5.3×10^7
黄铜合金 (Cu 30% Zn 70%)	1.6×10^{-8}	6.2×10^7
青铜合金 (Cu 30% Sn 70%)	1.6×10^{-8}	6.2×10^7
黄铜合金 (Cu 40% Zn 60%)	9.6×10^{-8}	5.3×10^7
青铜合金 (Cu 20% Sn 80%)	9.6×10^{-8}	5.3×10^7

注: 表3-1 可以看出, 铜、银、铂等金属的电阻率小, 铜铁等合金的电阻率较大. 银、铜等纯金属的电阻率比合金的要小, 但铜等纯金属的导电性不如银等金属.

电阻率 ρ 取决于材料的类型和品质
Cu, Al做导线, 铁铬铝, 镍铬合金做电阻丝

欧姆定律微分形式



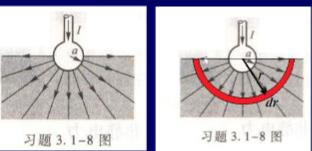
$$E = \frac{\Delta V}{\Delta l} \quad \therefore E \Delta l = \Delta V = j \cdot \Delta S \cdot \Delta R = j \cdot \Delta S \cdot \rho \cdot \frac{\Delta l}{\Delta S}$$

$$= j \rho \Delta l \quad \Rightarrow \quad j = \frac{1}{\rho} E$$

$$\Rightarrow \boxed{j = \rho E}$$

Page 140 《电磁学》3.1-8, 大地可看成均匀的导电介质, 其电阻率为 ρ , 用一半径为 a 的球形电极与大地表面相接, 半个球体埋在地面上, 电极本身电阻可忽略, 求此电极的接地电阻。

习题 3.1-8 图



习题 3.1-8 图

$$R = \int \rho \frac{dl}{A} = \int_a^\infty \rho \frac{dr}{2\pi r^2} = \frac{\rho}{2\pi} \left[-\frac{1}{r} \right]_a^\infty = \frac{\rho}{2\pi a}$$

焦耳定律微分形式: $\Delta P = (\Delta I)^2 \Delta R = (j \Delta S)^2 (\rho \frac{\Delta l}{\Delta S}) = \rho j^2 \Delta V = \frac{1}{\rho} E^2 \Delta V = \gamma E^2 \Delta V$ 热功率密度: $w = \frac{\Delta P}{\Delta V} = \gamma E^2$

· 稳恒磁场

· The electrostatic force: electric charge \rightarrow electric charge

The magnetic force:

Bar Magnet \leftrightarrow Bar Magnet

Electric current \rightarrow Bar Magnet

Action in distance

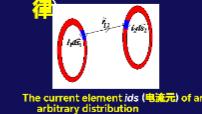
· The similarity between a solenoid and a magnet

Ampere suggested: "molecular current (分子电流)"

Electric Force: Coulomb's Law

$$d\vec{F}_{12} = \frac{dq_1 \cdot dq_2}{4\pi\epsilon_0 r_{12}^2} \hat{r}_{12}$$

Magnetic Force: Ampere's Law (安培定)



?

The current element ids (电流元) of an arbitrary distribution

Ampere's Law (cont.)

· In general, ids_2 is not on the same plane of ids_1

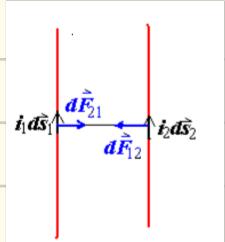
$ds_2 \cap \hat{n} = \theta_2$
 $ds_1 \approx \sin \theta_1$
 $ds_1 \perp \text{II plane}, ds_1 = 0$
 $ds_1 \text{ in II plane}, \theta_1 = \frac{\pi}{2}, ds_1 = \text{max.}$

$$dF_{12} = k \frac{i_1 i_2 ds_1 \sin \theta_1 ds_2 \sin \theta_2}{r_{12}^2}$$

安培定理:

$$d\vec{F}_{12} = k \cdot \frac{i_1 ds_1 \times (i_2 ds_2 \times \hat{r}_{12})}{r_{12}^2} \quad k = \frac{\mu_0}{4\pi} = 10^{-7} \text{ N/A}^2 \quad \mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2 \text{ (磁导率)}$$

eg. 1

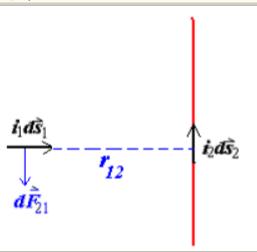


$$d\vec{F}_{12} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 ds_1 \times (i_2 ds_2 \times \hat{r}_{12})}{r_{12}^2} \quad ds_1 \perp \hat{r}_{12} \quad \therefore d\vec{F}_{12} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 i_2 ds_1 ds_2}{r_{12}^2}$$

$$dF_{12} = dF_{21}$$

$$d\vec{F}_{21} = \frac{\mu_0}{4\pi} \cdot \frac{i_2 ds_2 \times (i_1 ds_1 \times \hat{r}_{12})}{r_{12}^2} \quad ds_2 \perp \hat{r}_{12} \quad \therefore d\vec{F}_{21} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 i_2 ds_1 ds_2}{r_{12}^2}$$

eg. 2.

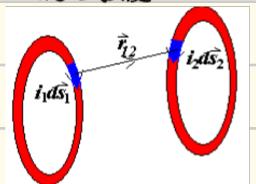


$$d\vec{F}_{12} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 ds_1 \times (i_2 ds_2 \times \hat{r}_{12})}{r_{12}^2} \quad ds_1 \parallel \hat{r}_{12} \quad \therefore dF_{12} = 0$$

$$d\vec{F}_{21} = \frac{\mu_0}{4\pi} \cdot \frac{i_2 ds_2 \times (i_1 ds_1 \times \hat{r}_{12})}{r_{12}^2} \quad ds_2 \perp \hat{r}_{12} \quad \therefore d\vec{F}_{21} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 i_2 ds_1 ds_2}{r_{12}^2}$$

$$dF_{12} \neq dF_{21} \quad (\text{牛顿第三定律在宏观上成立!})$$

· 磁感应强度 \vec{B}



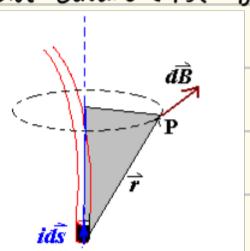
$$d\vec{F}_{12} = \frac{\mu_0}{4\pi} \cdot \frac{i_1 ds_1 \times (i_2 ds_2 \times \hat{r}_{12})}{r_{12}^2} \Rightarrow d\vec{F}_2 = \frac{\mu_0}{4\pi} \cdot i_2 ds_2 \times \oint_L \frac{i_1 ds_1 \times \hat{r}_{12}}{r_{12}^2}$$

$$\therefore \text{定义: } \vec{B}_1 = \frac{\mu_0}{4\pi} \oint_L \frac{i_1 ds_1 \times \hat{r}_{12}}{r_{12}^2} \quad \therefore d\vec{F}_2 = i_2 ds_2 \times \vec{B}_1$$

Unit: Tesla (T) ; $1 \text{ T} = 1 \text{ N/m.A}$, $1 \text{ T} = 10^4 \text{ Gauss}$

安培力

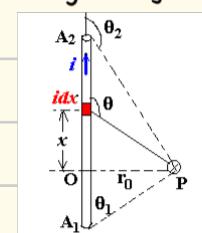
· Biot-Savart (毕奥-萨伐尔) 定理.



$$d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{id\vec{s} \times \hat{r}}{r^2}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \oint_L \frac{id\vec{s} \times \hat{r}}{r^2}$$

A long straight line



$$dB = \frac{\mu_0}{4\pi} \cdot \frac{idx \sin \theta}{r^2}$$

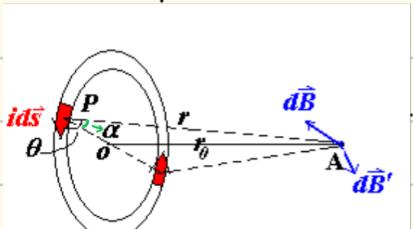
$$\text{Pkt: } B = \int_{A_1}^{A_2} dB = \frac{\mu_0}{4\pi} \int_{A_1}^{A_2} \frac{i \sin \theta dx}{r^2} \quad r_0 = r \sin(\pi - \theta) = r \sin \theta$$

$$r = \frac{r_0}{\sin \theta} \quad x = -\frac{r_0}{\tan \theta} \quad \Rightarrow dx = \frac{r_0 d\theta}{\sin^2 \theta}$$

$$B = \int_{\theta_1}^{\theta_2} \frac{\mu_0 i}{4\pi} \frac{\sin \theta \cdot \frac{r_0 d\theta}{\sin^2 \theta}}{r_0^2 / \sin^2 \theta} = \frac{\mu_0 i}{4\pi r_0} (\cos \theta_1 - \cos \theta_2)$$

$$\Rightarrow \text{无穷长: } \theta_1 = 0, \cos \theta_1 = 1 ; \theta_2 = \pi, \cos \theta_2 = -1 \quad \therefore B = \frac{\mu_0 i}{2\pi r_0}$$

· circular loop



$$|d\vec{B}| = |d\vec{B}'| \quad d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{id\vec{s} \times \hat{r}}{r^2} \quad dB_x = dB \cdot \cos \alpha \quad dB = \frac{\mu_0}{4\pi} \cdot \frac{idS \sin \theta}{r^2} \quad r = r_0 / \sin \alpha$$

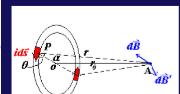
$$\therefore B_x = \oint dB_x = \oint dB \cos \alpha \quad \Rightarrow B = \frac{\mu_0 i}{4\pi} \oint \frac{\sin^2 \alpha}{r_0^2} \cos \alpha \cdot 2\pi R$$

$$= \frac{\mu_0}{2} \cdot \frac{iR^2}{(R^2 + r_0^2)^{3/2}}$$

$$\cdot \text{At the center of the loop } (r_0=0) \quad B = \frac{\mu_0 i}{2R}$$

$$\cdot r_0 \gg R ; \quad B = \frac{\mu_0 i R^2}{2r_0^3}$$

- The magnetic dipole moment μ (磁偶极矩) of the current loop.



$$B = \frac{\mu_0 i R^2}{2r_0^3} = \frac{\mu_0 i \pi R^2}{2\pi r_0^3} = \frac{\mu_0 i A}{2\pi r_0^3}$$

Define: $\mu = iA = i\pi R^2$

$$B = \frac{\mu_0 i R^2}{2r_0^3} = \frac{\mu_0 i \pi R^2}{2\pi r_0^3} = \frac{\mu_0 \mu}{2\pi r_0^3}$$

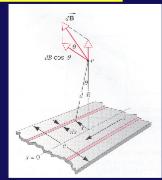
$$\mu = Ni\pi R^2$$

$$\vec{\mu} = i\vec{A}$$

Example 3: sample problem 33-5, p.757

Solution:

$$\begin{aligned} dB &= \frac{\mu_0 di}{2\pi d} = \frac{\mu_0 i}{2\pi d} dx \\ dB_x &= dB \cdot \cos\theta \\ d &= \frac{R}{\cos\theta} \\ B_x &= \int dB_x \\ &= \int \frac{\mu_0 i \cos^2\theta}{2\pi R a} dx \\ &= \frac{\mu_0 i}{2\pi R a} \int \cos^2\theta dx \end{aligned}$$

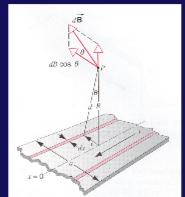


A flat strip of copper negligible thickness carrying a current i .

$$x = R \tan\theta, dx = R \frac{d\theta}{\cos^2\theta}$$

$$B_x = \frac{\mu_0 i}{2\pi a R} \int \cos^2\theta dx$$

$$= \frac{\mu_0 i}{2\pi a} \int_{-\pi}^{\pi} d\theta = \frac{\mu_0 i}{\pi a} = \frac{\mu_0 i}{\pi a} \operatorname{tg}^{-1} \frac{a}{2R}$$



If the point is far from the strip, $\alpha \approx \operatorname{tg}\alpha = a/2R$, $B = \frac{\mu_0 i}{2\pi R}$

If the point is very close to the strip, $R \rightarrow 0$, $\alpha = \pi/2$, $B = \frac{\mu_0 i}{2a}$

Solenoid (螺线管)

Example 4: Bohr model of the hydrogen atom

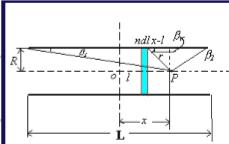
$$a_0 = 0.529 \text{ \AA} = 5.29 \times 10^{-11} \text{ m}$$

$$\nu = 6.63 \times 10^{15} \text{ Hz}$$

(a) The magnetic field:

$$\begin{aligned} \mu_B &= iA = 1.63 \cdot 10^{-3} \cdot \pi \cdot (5.29 \cdot 10^{-11})^2 \\ &= 0.923 \cdot 10^{-23} \text{ A} \cdot \text{m}^2 \end{aligned}$$

Bohr Magnon (玻尔磁子)



Length L ,
Radius R ,
The number of turns per unit length: n
The number of turns in dl : ndl

$$B = \frac{\mu_0}{2} \frac{iR^2}{(R^2 + r_0^2)^{3/2}}$$

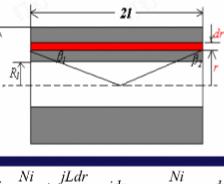
$$\begin{aligned} dB &= \frac{\mu_0}{2} \frac{R^2 indl}{[R^2 + (x-l)^2]^{3/2}} \\ B &= \frac{\mu_0}{2} \int_{-L/2}^{L/2} \frac{R^2 nl}{[R^2 + (x-l)^2]^{3/2}} d\beta \\ r &= \sqrt{R^2 + (x-l)^2} = \frac{R}{\sin\beta} \\ x-l &= ctg\beta \Rightarrow dl = \frac{R}{\sin^2\beta} d\beta \end{aligned}$$

$$\begin{aligned} \cos\beta_1 &= \frac{x+L/2}{\sqrt{R^2 + (x+L/2)^2}} \\ \cos\beta_2 &= \frac{x-L/2}{\sqrt{R^2 + (x-L/2)^2}} \\ &= \frac{1}{2} \mu_0 ni (\cos\beta_1 - \cos\beta_2) \end{aligned}$$

$L \rightarrow \infty, \beta_1 = 0, \beta_2 = \pi$

$$B = \frac{1}{2} \mu_0 ni (1+1) = \mu_0 ni$$

Example 5. a solenoid with many layers wires N (单位长度的匝数)



The total number of turns: N

A solenoid with a layer turn:

$$B = \frac{1}{2} \mu_0 ni (\cos\beta_1 - \cos\beta_2)$$

$$\begin{aligned} dB &= \frac{1}{2} \mu_0 \frac{Ni}{2l(R_2 - R_1)} \frac{2l}{\sqrt{l^2 + r^2}} dr \\ B &= \mu_0 jl \int_{R_1}^{R_2} \frac{dr}{\sqrt{l^2 + r^2}} \\ &= \mu_0 jl \ln \frac{R_2 + \sqrt{R_2^2 + l^2}}{R_1 + \sqrt{R_1^2 + l^2}} \end{aligned}$$

In practical application

$$\gamma = \frac{l}{R_1}, \alpha = \frac{R_2}{R_1}$$

$$B_0 = \mu_0 j R_1 \gamma \ln \left(\frac{\alpha + \sqrt{\alpha^2 + \gamma^2}}{1 + \sqrt{1 + \gamma^2}} \right)$$

Now, Cu wire: 2T

Superconductor: 20T

6. 磁通量

1. The Gauss'Law of the magnetic field

Magnetic flux (磁通量)

$$\Phi_B = \iint \vec{B} \cdot d\vec{A} = \iint B \cos\theta dA$$

$$\Phi_B \text{ unit: } T \cdot m^2 = Wb$$

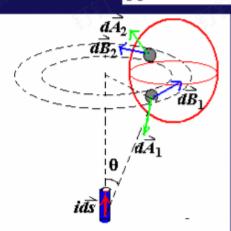
$$\vec{B} = \lim_{\Delta A \rightarrow 0} \frac{\Delta \Phi_B}{\Delta A}$$

Gauss' Law

$$\iint \vec{B} \cdot d\vec{A} = 0$$

No magnetic monopoles

Show: $\iint \vec{B} \cdot d\vec{A} = 0$



From Biot-Savart Law

$$\vec{B} = \frac{\mu_0}{4\pi} \oint \frac{id\vec{s} \times \hat{r}}{r^2}$$

In the loop

For an arbitrary closed surface:

$$\begin{aligned} dA_1^* &= |dA_1 \cos\theta_1| = dA_1 |\cos\theta_1|, \theta_1 > \frac{\pi}{2}, \cos\theta_1 < 0 \\ dA_2^* &= |dA_2 \cos\theta_2| = dA_2 |\cos\theta_2|, \theta_2 < \frac{\pi}{2}, \cos\theta_2 > 0 \end{aligned}$$

$$\begin{aligned} d\Phi_{B1} &= \frac{\mu_0}{4\pi} \frac{id\vec{s} \sin\theta}{r^2} dA_1 \cos\theta_1 \\ &= -\frac{\mu_0}{4\pi} \frac{id\vec{s} \sin\theta}{r^2} dA_1^* \\ d\Phi_{B2} &= \frac{\mu_0}{4\pi} \frac{id\vec{s} \sin\theta}{r^2} dA_2 \cos\theta_2 \\ &= \frac{\mu_0}{4\pi} \frac{id\vec{s} \sin\theta}{r^2} dA_2^* \end{aligned}$$

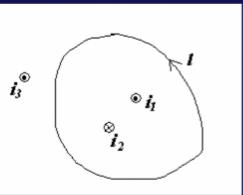
The area of solenoid $|dA_1^*| = dA_2^*$ \rightarrow 大小相等

$$\therefore d\Phi_{B1} = -d\Phi_{B2}$$

$$d\Phi_{B1} + d\Phi_{B2} = 0$$

$$\iint \vec{B} \cdot d\vec{A} = 0$$

2. The Ampere's Loop Law of a magnetic field (磁场安培环路定律)



$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_{\text{in loop}} i$$

$\sum i$ the total current "enclosed" by the loop.

看右手为正

Notes • The i 's sign: obey right-hand rule “+” not obey right-hand rule “-”

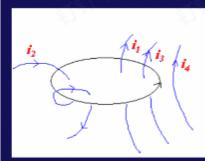
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (+i_1 - i_2)$$

(2) The B at points on the loop and within loop certainly depends on the current i_3 , however the integral of $\vec{B} \cdot d\vec{l}$ does not depend on the current i_3 that do not penetrate the surface by the loop.

积分只与里面电流有关

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum i \Rightarrow \text{求 } B.$$

Notes (Cont.)



$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_{\text{in loop}} i$$

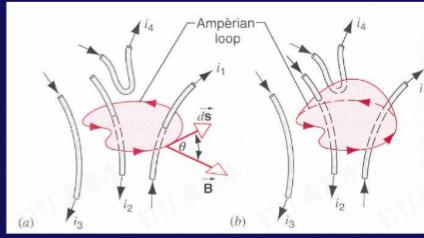
$$= \iint_S \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right| dxdydz$$

$$= \iint_S \left| \frac{\cos \alpha}{R} \frac{\cos \beta}{R} \frac{\cos \gamma}{R} \right| ds$$

Stokes 公式

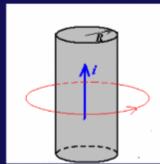
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (i_1 - i_2)$$

Due to $\frac{\mu_0}{4\pi}$ in Biot-Savart Law, There is only a μ_0 in Ampere's Loop Law



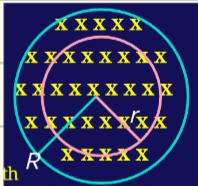
eg.

Example 1: Infinite long wire, Radius of wire R ; i : uniform distribution



$$\oint \vec{B} \cdot d\vec{l} = B \cdot 2\pi r$$

$$B = \frac{\mu_0 i}{2\pi r}$$



内部半径 r 处 $\oint \vec{B} \cdot d\vec{l} = B \cdot 2\pi r$

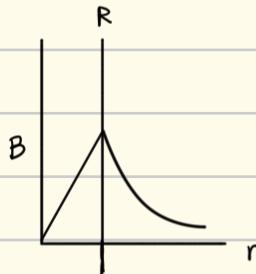
$$i = \frac{i}{\pi R^2} \cdot \pi r^2 = \frac{i r^2}{R^2} \Rightarrow B = \frac{\mu_0 i r}{2\pi R^2}$$

• Inside the wire: ($r < R$)

$$B = \frac{\mu_0 i r}{2\pi R^2}$$

• Outside the wire: ($r > R$)

$$B = \frac{\mu_0 i}{2\pi r}$$



有线长的线，无法从安培环路出发求 B ！

Example 2: B Field of ∞ Current Sheet

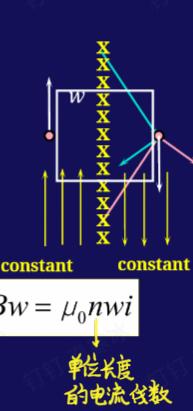
Consider an ∞ sheet of current described by n wires/length each carrying current i into the screen as shown. Calculate the B field.

What is the direction of the field?
Symmetry \Rightarrow vertical direction

Calculate using Ampere's law for a square of side w :

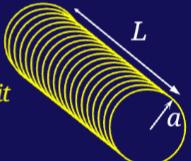
$$\oint \vec{B} \cdot d\vec{l} = Bw + 0 + Bw + 0 = 2Bw = \mu_0 nwi$$

$$\rightarrow B = \frac{1}{2} \mu_0 n i$$



Example 3 B Field of a Solenoid

• A constant magnetic field can (in principle) be produced by an ∞ sheet of current. In practice, however, a constant magnetic field is often produced by a solenoid.



• A solenoid is defined by a current i flowing through a wire that is wrapped n turns per unit length ∞ on a cylinder of radius a and length L .

• If $a \ll L$, the B field is to first order contained within the solenoid, in the axial direction, and of constant magnitude. In this limit, we can calculate the field using Ampere's Law.

B Field of an ∞ Solenoid

• To calculate the B field of the ∞ solenoid using Ampere's Law, we need to justify the claim that the B field is 0 outside the solenoid.

• To do this, view the ∞ solenoid from the side as 2∞ current sheets.

• The fields are in the same direction in the region between the sheets (inside the solenoid) and cancel outside the sheets (outside the solenoid).

• Draw square path of side w :

$$\oint \vec{B} \cdot d\vec{l} = Bw = \mu_0 nwi$$

$$\rightarrow B = \mu_0 n i$$

Note: $B \propto \frac{\text{Amp}}{\text{Length}}$ ✓

Example 4 Toroid (螺旋环)

Toroid defined by N total turns with current i .

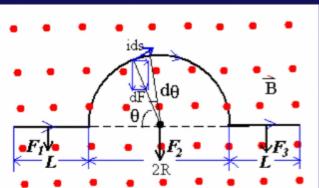
$B=0$ outside toroid! (Consider integrating B on circle outside toroid)

To find B inside, consider circle of radius r , centered at the center of the toroid.

$$\oint \vec{B} \cdot d\vec{l} = B \cdot 2\pi r = \mu_0 Ni$$

$$B = \frac{\mu_0 Ni}{2\pi r} = \mu_0 ni$$

Example 32-5: Page 738



$$d\vec{F} = i d\vec{s} \times \vec{B}$$

$$F_1 = F_2 = iLB$$

$$d\vec{F} = i d\vec{s} \times \vec{B} = iBds = iBRd\theta$$

$$dF_U = dF \cos\theta, F_U = \int_0^\pi dF_U = 0$$

$$dF_1 = dF \sin\theta$$

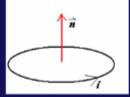
$$F_2 = F_1 = \int_0^\pi iBRd\theta \sin\theta = iBR \int_0^\pi \sin\theta d\theta = 2iBR$$

The resultant force on the entire wire:

$$F = F_1 + F_2 + F_3 = iLB + iLB + i2RB = iB(2L + 2R)$$

3. Torque (力矩) exerted on a current loop in an uniform magnetic field

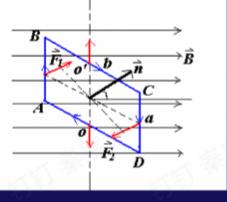
- For convenience sake, the unit normal vector \vec{n} of current loop,



Right hand rule

$$\vec{\mu} = iA\hat{n}$$

- A rectangular loop of wire (矩形线圈)



$$\sum \vec{F} = \vec{F}_{AB} + \vec{F}_{BC} + \vec{F}_{CD} + \vec{F}_{DA} = 0$$

Torque

$$\begin{aligned} \tau &= F_{AB} \cdot \frac{b}{2} \cdot \sin\theta + F_{CD} \cdot \frac{b}{2} \cdot \sin\theta \\ &= iaB \cdot \frac{b}{2} \cdot \sin\theta + iaB \cdot \frac{b}{2} \cdot \sin\theta \\ &= iBa \sin\theta \\ \vec{\tau} &= iA(\vec{n} \times \vec{B}) = \vec{\mu} \times \vec{B} \end{aligned}$$

Bring \vec{n} into alignment with \vec{B}

力矩方向: 顺时针转(向里) 逆时针转(向外)

• The magnetic dipole (磁偶极矩)

If we define

$$\vec{\mu} = iA\vec{n}$$

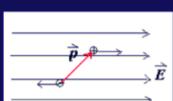
$$\vec{\tau} = iA(\vec{n} \cdot \vec{B})$$

The work done by magnetic field

If we define:

$$\begin{aligned} U &= - \int \vec{\tau} \cdot d\vec{\theta} = \int \mu B \sin\theta d\theta \\ &= \mu B \cos\theta = \vec{\mu} \cdot \vec{B} \\ &\theta = 90^\circ, \quad U = 0 \\ U &= -\vec{\mu} \cdot \vec{B} \end{aligned}$$

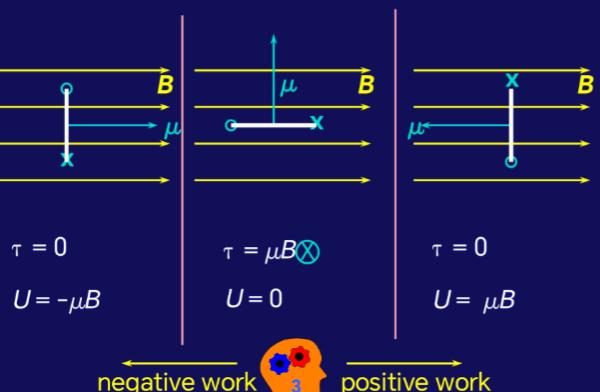
Remind: the electric dipole



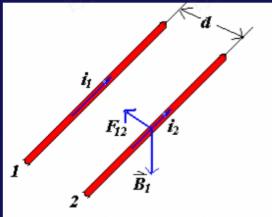
$$\vec{p} = q\vec{d}$$

$$\begin{aligned} \text{The potential energy:} \\ U &= -\vec{p} \cdot \vec{E} \end{aligned}$$

Potential Energy of Dipole 磁偶极矩在磁场中的势能



2. Two parallel conductors



The magnetic field at the second wire due to the first wire

$$B_1 = \frac{\mu_0 i_1}{2\pi d}$$

$$d\vec{F}_{12} = i_2 d\vec{s}_2 \times \vec{B}_1$$

$$dF_{12} = i_2 ds_2 B_1 = \frac{\mu_0 i_1 i_2}{2\pi d} ds_2$$

$$f = \frac{dF_{12}}{ds_2} = \frac{\mu_0 i_1 i_2}{2\pi d}$$

单位长度受力

Ampere (A)

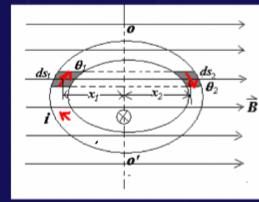
The magnetic force per unit length:
The definition of the unit of current:

if: $i_1 = i_2 = i$

$$f = \frac{\mu_0 i^2}{2\pi d}, \quad i = \sqrt{\frac{2\pi f d}{\mu_0}} = \sqrt{\frac{fd}{2 \times 10^{-7}}}$$

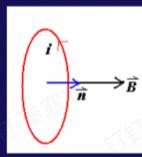
$$d = 1m, f = 2 \times 10^{-7} N/m, i = 1A$$

• For arbitrary shape loop (任意形状线圈)



$$\begin{aligned} dF_1 &= ids_1 B \sin\theta_1 \\ dF_2 &= ids_2 B \sin\theta_2 \\ ds_1 \sin\theta_1 &= ds_2 \sin\theta_2 = dh \\ dF_1 &= dF_2 = iBdh \end{aligned}$$

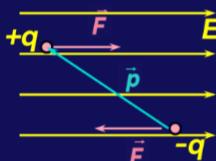
$$\begin{aligned} d\tau &= dF_1 \cdot x_1 + dF_2 \cdot x_2 \\ &= iBdh(x_1 + x_2) \\ &= iBdA \end{aligned}$$



$$\begin{aligned} \vec{n} \parallel \vec{B}, \quad \vec{\tau} &= 0 \\ \vec{n} \cap \vec{B} = \theta, \quad \vec{\tau} &= iA(\vec{n} \times \vec{B}) \end{aligned}$$

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Electric Dipole Analogy

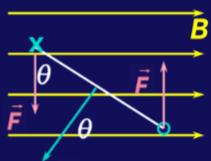


$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\vec{F} = q\vec{E}$$

$$\vec{p} = 2q\vec{a}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$



$$\vec{\tau} = \vec{r} \times \vec{F}$$

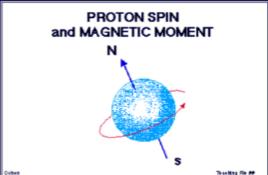
$$d\vec{F} = i d\vec{s} \times \vec{B} \text{ (per turn)}$$

$$\mu = NiA$$

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

MRI (Magnetic Resonance Imaging) ≡ NMR (Nuclear Magnetic Resonance)

A single proton (like the one in every hydrogen atom) has a charge (+ve) and an intrinsic angular momentum ("spin"). If we (naively) imagine the charge circulating in a loop \rightarrow magnetic dipole moment μ .



In an external B -field: μ 來自自旋

- Classically: there will be torques unless μ is aligned along B or against it.
- QM: The spin is always ~aligned along B or against it

Aligned: $U_1 = -\mu B$ Anti-aligned: $U_2 = \mu B$

Energy Difference: $\Delta U \equiv U_2 - U_1 = 2\mu B$

MRI / NMR Example

Aligned: $U_1 = -\mu B$ Anti-aligned: $U_2 = \mu B$

Energy Difference: $\Delta U \equiv U_2 - U_1 = 2\mu B$

$\mu_{\text{proton}} = 1.36 \times 10^{-26} \text{ A m}^2 = 1 \text{ Tesla} (= 10^4 \text{ Gauss})$
(note: this is a big field!)
 $\Delta U = 2\mu B = 2.7 \times 10^{-26} \text{ J}$

In QM, you will learn that photon energy = frequency \cdot Planck's constant
 $h \equiv 6.6 \times 10^{-34} \text{ J s}$

$h\nu = \Delta U$

$$\nu = \frac{\Delta U}{h} = \frac{2.7 \times 10^{-26} \text{ J}}{6.6 \times 10^{-34} \text{ J s}} = 41 \text{ MHz}$$

What does this have to do with

• 电荷在磁场中运动 (洛伦兹力)

1. Lorentz Force

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$F = qvB \sin \theta$$

(1) $\vec{F} \perp$ the plane of \vec{v} and \vec{B}
(2) $\vec{F} \perp \vec{v}$, it can not change the magnitude of v , only its direction.

Equivalently, the force is always at right angles to the displacement of the particle and can do no work on it

$\vec{F}_L = q\vec{v} \times \vec{B}$

 $d\vec{F}_A = id\vec{s} \times \vec{B}$

Microscopic Description (微观描述)

Macroscopic Description (宏观描述)

The electron alignment moving speed: \vec{u}
The electron number per unit volume: n
In Δt time: $\Delta q = enA \cdot u\Delta t$

$$i = \frac{\Delta q}{\Delta t} = nAue$$

$$\vec{u} \perp \vec{B}, \sin \theta = 1, f_i = euB$$

The total force: $F_A = nA \cdot \Delta s \cdot f_i = nA \cdot \Delta s \cdot euB$

$$= B(euAn)\Delta s$$

$$= Bi\Delta s$$

Ampere Force

(1) $\vec{v} \perp \vec{B}$, in uniform magnetic field

Constant-Speed circle motion

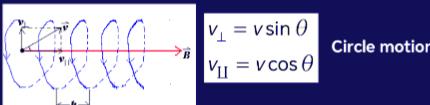
$$\vec{F} = q\vec{v} \cdot \vec{B}$$

$$qvB = m \frac{v^2}{R}, R = \frac{mv}{qB}$$

Period: $T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$

Frequency: $f = \frac{1}{T} = \frac{qB}{2\pi m}$

(2) In general case



$$T = \frac{2\pi R}{v_{\perp}}$$

$$h = v_{\parallel}T = \frac{2\pi m v_{\parallel}}{qB}$$

等螺距的螺旋运动

• 霍尔效应

At Equilibrium: $qvB = qE, E = vB$

$$V_{AA} = E \cdot b = vB \cdot b = \frac{j}{nq} \cdot B \cdot b$$

$$= \frac{(j \cdot b \cdot d) \cdot B}{nq \cdot d} = \frac{i \cdot B}{nq \cdot d}$$

$$= \frac{1}{nq} \cdot \frac{i \cdot B}{d} = K \cdot \frac{IB}{d}$$

Charge drift speed (漂移速度): v
The charge number per unit volume: n

$$j = \frac{dq}{dt} = \frac{qndIdA}{dt} = qn \cdot \frac{dI}{dt} = qnv$$

In SC: n small, B (kG)
In metal: n large, B (T)

$$n = \frac{iB}{qd} \cdot \frac{1}{V_{AA}}$$

$$R_H = \frac{V_{AA}}{i} = \frac{B}{nqd}$$

霍尔电阻 ΔV

· 法拉第电磁感应定律

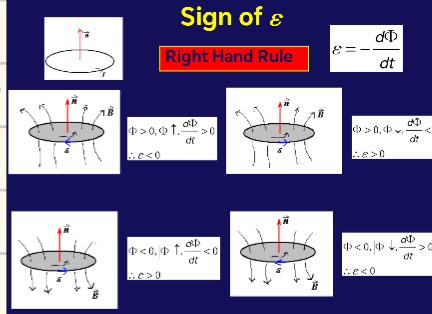
$$\text{d}A$$

$$\vec{B}$$

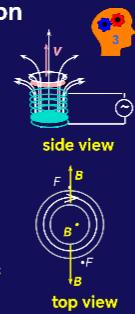
$$\vec{B} \cdot \vec{d}A$$

$$\Phi_B = \iint \vec{B} \cdot d\vec{A}$$

$$\varepsilon = -\frac{d\Phi_B}{dt}$$



Application of Induction E-M Cannon(电磁炮)



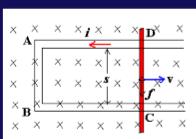
- Connect solenoid to a source of alternating voltage.
- The flux through the area \perp to axis of solenoid therefore changes in time.
- A conducting ring placed on top of the solenoid will have a current induced in it opposing this change.
- There will then be a force on the ring since it contains a current which is circulating in the presence of a magnetic field.

负号实际是楞次定律

- In a steady magnetic field, moving conductor: motional emf
- Conductor in steady, Changing magnetic field: induced emf

1. Motional emf (动生电动势):

Lorentz force results in a motional emf.



$$\vec{f} = -e(\vec{v} \times \vec{B})$$

Electron moves in the direction of DCBA
Non electrostatic force: (非静电力)

Motional emf:

$$\varepsilon = \int_C \vec{K} \cdot d\vec{l} = \int_C (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

电动势ε

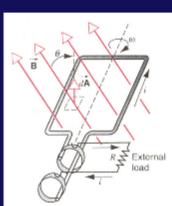
是非静电力将单位正电荷从负极移到正极所做的功

Applications: Generators and Motors (发电机和电动机)

Generator is a device for converting mechanical work (or other) into electrical work in the load.

$$\Phi_B = \vec{B} \cdot \vec{A} = BA \cos \theta = BA \cos \omega t$$

$$\varepsilon = -\frac{d\Phi_B}{dt} = -BA \frac{d \cos \omega t}{dt} = BA \omega \sin \omega t$$



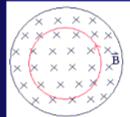
Induced electric field (感应电场)

$$\vec{E}_{\text{induced}} = ?$$

- The work W done on the charge by the induced electric field E in circular is $q_0 \varepsilon$

$$eq_0 = q_0 E_{\text{induced}} \cdot 2\pi r$$

$$\varepsilon = E_{\text{induced}} \cdot 2\pi r = \oint \vec{E}_{\text{induced}} \cdot d\vec{l}$$



- Faraday's Law:

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

$$\therefore \oint \vec{E}_{\text{induced}} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

- For any point in space

$$\vec{E} = \vec{E}_{\text{sta}} + \vec{E}_{\text{ind}}$$

$$\therefore \oint \vec{E} \cdot d\vec{l} = \oint (\vec{E}_{\text{sta}} + \vec{E}_{\text{ind}}) \cdot d\vec{l} = 0 + \left(-\frac{d\Phi_B}{dt} \right) = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{E} \cdot d\vec{l} = \iint \vec{B} \cdot d\vec{A}$$

$$\oint \vec{E} \cdot d\vec{l} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

还是 Stokes 公式

$$\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{A}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

拓广的环路定理 (静电场&感应电场)

闭合积分为0 闭合积分
为电动势ε

34-5. Induction & Relative Motion

In the Reference S fixed with B:

$$\vec{V} = \vec{v} + \vec{v}_d, \quad \vec{F}_B = \vec{N} + \vec{F}_i$$

$$dW_N = N(vdt)$$

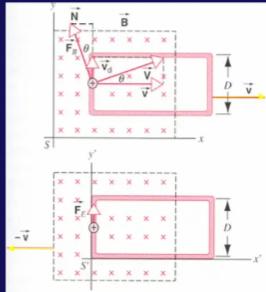
$$= F_B \sin \theta (vdt)$$

$$= (qVB)(v_d/V)(vdt)$$

$$= (qBv_d)(vdt)$$

$$= (qBv)(v_d dt)$$

$$= qBvdl$$



$$W_N = \int qBvdl = qBvD$$

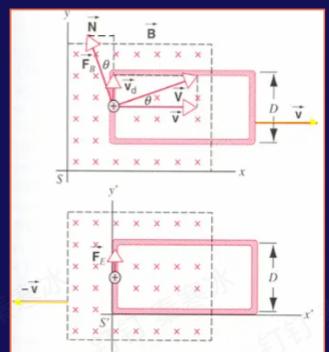
$$\varepsilon = W_N / q = BDv$$

$$dW_i = -F_i dl = -F_B \cos \theta dl = -qVB(v/V)dl = -qvBdl$$

$$W_i = -qvBD = -W_N$$

- $W_N + W_i = 0$, the work by force F_L on the charge carrier is zero. It does not apply energy, but play the role of transforming energy.

- Motional emf is intimately connected with the sideways deflecting force by a magnetic field.



The Reference **S'** fixed with the loop:

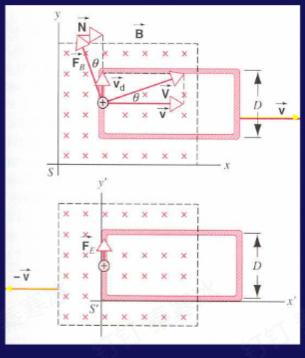
$$\varepsilon' = \int E' \cdot d\ell = E' D$$

$$\therefore \varepsilon' = BDv$$

$$\vec{E}' = \vec{v} \times \vec{B}$$

Force is of purely electric origin,

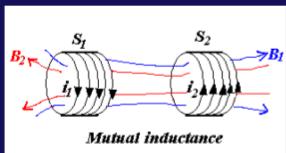
$$\varepsilon = \int \vec{E}' \cdot d\ell$$



In general in **S'**:

$$\varepsilon = \int (\vec{E}' + \vec{v} \times \vec{B}) \cdot d\ell$$

1. Mutual Inductance (互感)



From Faraday's Law

$$\begin{aligned} i_1 \text{ change } & S_2 \text{ induced emf } \varepsilon_2 \\ i_2 \text{ change } & S_1 \text{ induced emf } \varepsilon_1 \end{aligned}$$

Mutual inductance emf ε_1 & ε_2

$$\begin{aligned} \Psi_{12} & (\propto N_2 A_1 B_1) \propto N_2 \Phi_{12} \\ \Psi_{12} & = M_{12} i_1 \end{aligned}$$

$$\begin{aligned} \Psi_{21} & (\propto N_1 A_2 B_2) \propto N_1 \Phi_{21} \\ \Psi_{21} & = M_{21} i_2 \end{aligned}$$

The number of flux linkage (磁通匝链数) in S_2 due to S_1 :

From Faraday's Law

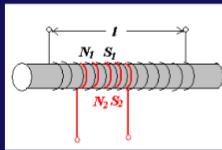
$$M_{12} = \frac{\Psi_{12}}{i_1} = \frac{N_2 \Phi_{12}}{i_1}; \quad \varepsilon_2 = -\frac{d\Psi_{12}}{dt} = -M_{12} \frac{di_1}{dt}, \quad (i_1 \text{ change})$$

$$M_{21} = \frac{\Psi_{21}}{i_2} = \frac{N_1 \Phi_{21}}{i_2}; \quad \varepsilon_1 = -\frac{d\Psi_{21}}{dt} = -M_{21} \frac{di_2}{dt}, \quad (i_2 \text{ change})$$

Notes

- M_{12}, M_{21} are called inductance constant (互感系数).
- $M_{12} = M_{21} = M$
- Unit of M: Hery (亨利) H $1H = 1Wb/1A, mH, \mu H$

Example 1



$$I = 1m, A = 10cm^2 = 10^{-3} m^2$$

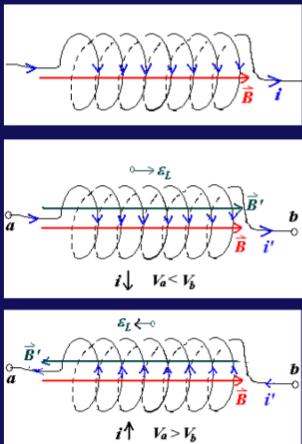
$$N_1 = 1000, \quad N_2 = 20, \quad \frac{di}{dt} = 10A/s$$

Calculate Mutual inductance, induced emf ε_2 in S_2

$$\begin{aligned} B &= \mu_0 n i, \quad B_1 = \mu_0 \frac{N_1}{l} i_1 \\ \Psi_{12} & = N_2 B_1 A = \mu_0 \frac{N_1 N_2 A}{l} i_1 \\ M_{12} & = \frac{\Psi_{12}}{i_1} = \mu_0 \frac{N_1 N_2 A}{l} \\ & = 4\pi \cdot 10^{-7} \frac{1000 \cdot 20 \cdot 10^{-3}}{1} \\ & = 25 \cdot 10^{-6} H = 25 \mu H \end{aligned}$$

$$\begin{aligned} \varepsilon_2 & = -M \frac{di_1}{dt} \\ & = -25 \cdot 10^{-6} \cdot 10V \\ & = -250 \mu V \end{aligned}$$

2. Self-Inductance (自感)



i change, \vec{B} change
— induced emf ε_L

$$\Psi = NBA = Li$$

$$\varepsilon_L = -\frac{d\Psi}{dt} = -L \frac{di}{dt}$$

$$V_b - V_a = -L \frac{di}{dt}$$

L ----- self-inductance

3. How to calculate the self-inductance(自感系数)

Similar to calculating the capacitance of a capacitor

suppose, q

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}, \quad (\text{Gauss'Law})$$

$$V = \int_a^b \vec{E} \cdot d\ell$$

$$C = \frac{q}{V}$$

Calculate L :

- Suppose i in a particular inductor
- Determine B
- The number of flux linkages:

$$\begin{aligned} \Psi & = N \Phi_B \\ & = NBA \\ & = Li \end{aligned}$$

$$\begin{aligned} L & = \frac{\Psi}{i} = \frac{N \Phi_B}{i} \\ \varepsilon_L & = -\frac{d\Psi}{dt} \\ & = -L \frac{di}{dt} \\ & = -\frac{d}{dt} (N \Phi_B) \end{aligned}$$

Self-Inductance L

- The magnetic field produced by the current in the loop shown is proportional to that current: $B \propto i$
- The flux, therefore, is also proportional to the current. $\Phi_B = \iint \vec{B} \cdot d\vec{A} \propto i$

- We define this constant of proportionality between flux and current to be the inductance, L .

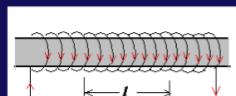
$$L = \frac{\Phi_B}{i}$$

- Combining with Faraday's Law gives the emf induced by a changing current:

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} (L i) = -L \frac{di}{dt}$$

$$\varepsilon = -L \frac{di}{dt}$$

Example 2, The self-inductance of a solenoid



Calculate L for a section of length l of a long solenoid of cross-sectional area A

Suppose i in the solenoid.

$$B = \mu_0 n i$$

The number of flux linkages:

$$\Psi = N \Phi_B = n l B A = \mu_0 n^2 l i A$$

$$L = \frac{\Psi}{i} = \mu_0 n^2 l A = \mu_0 n^2 V$$

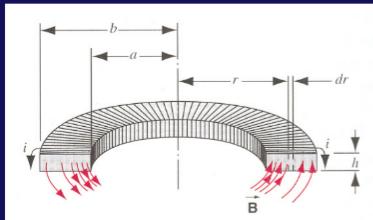
The self-inductance per unit volume:

$$L_v = \frac{L}{V} = \mu_0 n^2$$

The self-inductance per unit length:

$$L_v = \frac{L}{l} = \mu_0 n^2 A$$

Example 3 The inductance of a Toroid of rectangular (长方形螺绕环)



N: the total number of turns of toroid

L depends only on the geometrical factors.

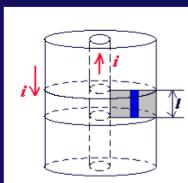
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 N i$$

$$B = \frac{\mu_0 i N}{2\pi r}$$

$$\Phi_B = \iint \vec{B} \cdot d\vec{A} = \int_a^b \frac{\mu_0 i N}{2\pi r} h dr$$

$$= \frac{\mu_0 i N h}{2\pi} \int_a^b \frac{dr}{r} = \frac{\mu_0 i N h}{2\pi} \ln \frac{b}{a} \quad \therefore L = \frac{N \Phi_B}{i} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$$

Example: TV signals transmit (coaxial cable)



$$\oint \vec{B} \cdot d\vec{l} = \mu_0 i,$$

$$B = \frac{\mu_0 i}{2\pi r}$$

$$\Phi_B = \iint \vec{B} \cdot d\vec{A} = \int_{R_1}^{R_2} B l dr$$

$$= \frac{\mu_0 i l}{2\pi} \int_{R_1}^{R_2} \frac{dr}{r} = \frac{\mu_0 i l}{2\pi} \ln \left(\frac{R_2}{R_1} \right)$$

$$\therefore L = \frac{\Phi_B}{i} = \frac{\mu_0}{2\pi} l \ln \left(\frac{R_2}{R_1} \right)$$

线足够粗时还要考虑线内部有磁场

一、自感系数 (L)

1. 定义

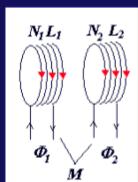
当一个线圈中的电流发生变化时, 它产生的变化磁场会穿过自身线圈, 从而在自身中感应出电动势 (这种现象叫自感现象)。自感系数 L 是描述“线圈自身电流变化时, 产生自感电动势能力”的物理量。

二、互感系数 (M)

1. 定义

当两个线圈 (如 S_1 和 S_2) 之间存在磁场耦合时, 一个线圈的电流变化会在另一个线圈中感应出电动势 (这种现象叫互感现象)。互感系数 M 是描述“两个线圈之间磁场耦合强弱”的物理量。

4. The relationship between mutual inductance and self inductance



• No flux leakage

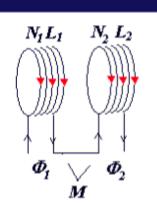
$$M = \sqrt{L_1 L_2}$$

• Direct in series

$$L = L_1 + L_2 + 2M \\ = L_1 + L_2 + 2\sqrt{L_1 L_2}$$

• Opposite in series

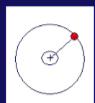
$$L = L_1 + L_2 - 2M \\ = L_1 + L_2 - 2\sqrt{L_1 L_2}$$



1. Atomic and nuclear magnetism (原子和原子核磁性)

The magnetic properties is determined by the magnetic moment of the valence electrons (价电子的磁矩)。

• Orbital magnetic moment (轨道磁矩)



The magnetic dipole moment:

$$\therefore \mu_i = \frac{e}{2m} I \quad \therefore \vec{\mu}_i = -\frac{e}{2m} \vec{I}$$

The magnetic dipole moment in vector:

$$\therefore \vec{\mu}_L = -\frac{e}{2m} \vec{L}$$

\vec{L} : The total angular momentum of all electrons in atom.
 $\vec{\mu}_e$: The total magnetic moment of all electrons in atom.
 $\hbar = \frac{e\hbar}{2\pi}$

The angular momentum:

$$I = mvr$$

Quantum Mechanism:

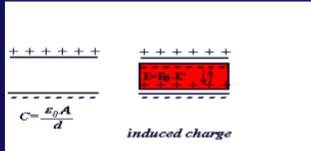
$$\vec{L} : \sqrt{L(L+1)}\hbar = \sqrt{L(L+1)} \frac{\hbar}{2\pi} \\ L_z : (0, \pm 1, \pm 2, \dots, \pm L)\hbar$$

The smallest unit of μ_L

原子磁性取决于自旋磁矩和轨道磁矩求和

5. Inductors with magnetic material

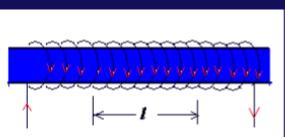
• Capacitor with dielectrics



$$C = \kappa_e C_0$$

κ_e : dielectric constant

• inductor with magnetic material



$$L = \kappa_m L_0$$

κ_m : permeability constant (磁导率)

For paramagnetic or diamagnetic material:

$$\kappa_m \approx 1$$

For ferromagnetic material:

$$\kappa_m = 10^3 - 10^4$$

Magnetic Properties of materials (材料的磁性质)

• The spin magnetic dipole moment (自旋磁矩)

Elementary particles: intrinsic angular momentum (自旋角动量) S

For Example:

$$\begin{aligned} \text{electron (电子)}: s &= \frac{1}{2}\hbar \\ \text{Proton (质子)}: s &= \frac{1}{2}\hbar \\ \text{Neutron (中子)}: s &= \frac{1}{2}\hbar \end{aligned}$$

$$\begin{aligned} \text{Deuteron } (\text{$_1^2$H}): s &= \hbar \\ \text{Alpha (a粒子)}: s &= 0 \end{aligned}$$

$$\vec{\mu}_s = -\frac{e}{m} \vec{s}$$

$$\vec{\mu}_s = -\frac{e}{m} \vec{S}$$

The total spin of all electrons in the atom:

$$\vec{S} = \sum \vec{s}_i$$

The magnetic properties of material are determined by the magnetic dipole moment of its atoms.

$$\vec{L}, \vec{S} \Rightarrow \vec{\mu}_J = \vec{\mu}_s + \vec{\mu}_L, \quad \vec{\mu}_J = -\frac{e}{2m} \vec{J}$$

$$J = \vec{L} + 2\vec{S}$$

• Nuclear Magnetism (原子核磁性)

Nuclear (原子核) = Protons + Neutrons

• Orbital part: Proton (质子) $\vec{\mu}_{p_o} \neq 0$

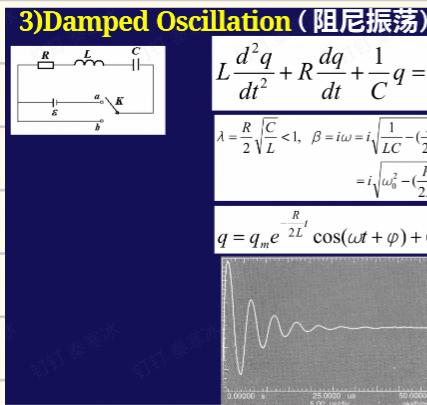
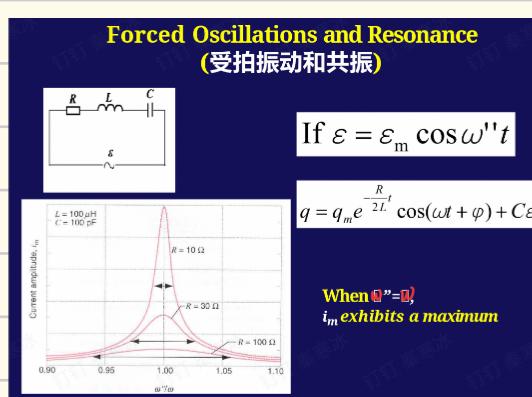
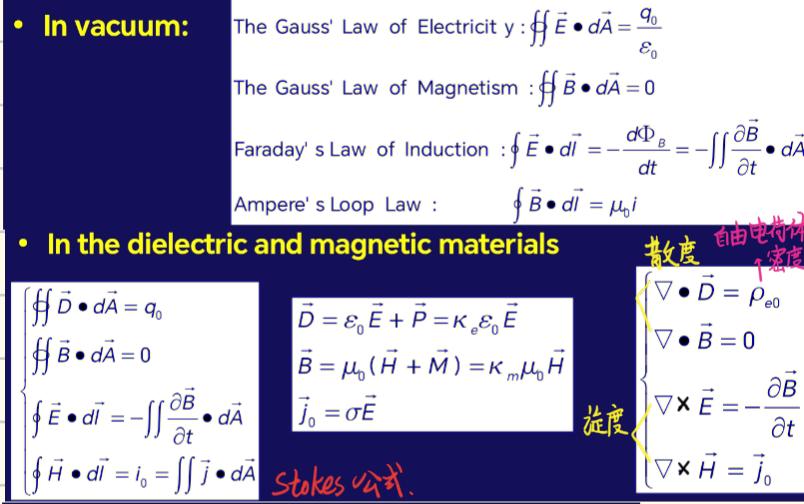
Neutron (中子) $\vec{\mu}_{n_o} = 0$

• Spin part: Proton (质子) $\vec{\mu}_{p_s} \neq 0$

Neutron (中子) $\vec{\mu}_{n_s} \neq 0$

$$\vec{\mu}_N \ll \vec{\mu}_A \left(\frac{1}{1800} \right)$$

$$\vec{\mu}_N = \frac{e}{2M} \vec{J}_N$$



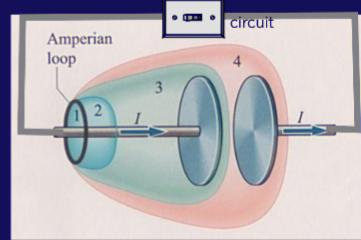
$$\left\{ \begin{array}{l} \nabla \cdot \vec{D} = \rho_{e0} \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{H} = \vec{J}_0 \end{array} \right.$$

Maxwell's Displacement Current

- Consider applying Ampere's Law to the current shown in the diagram.

If the surface is chosen as 1, 2 or 4, the enclosed current = i

If the surface is chosen as 3, the enclosed current = 0! (i.e., there is no current between the plates of the capacitor)



Big Idea: In order to have

$$\oint \vec{H} \cdot d\vec{l}$$
 for surface 1 = $\iint \vec{H} \cdot d\vec{l}$ face 3

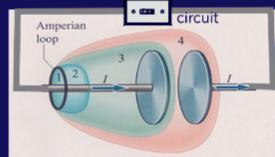
Maxwell proposed there was an extra "displacement current" in the region between the plates, equal to the current in the wire \rightarrow

$$\text{Modified Ampere's law: } \oint \vec{H} \cdot d\vec{l} = i_0 + i_D$$

38-2 Induced Magnetic Field (感应磁场) and the Displacement current (位移电流)

Not at steady condition

$$\iint_S \vec{J}_0 \cdot d\vec{A} = -\frac{dq_0}{dt}$$



From Gauss' Law:

$$\iint_S \vec{D} \cdot d\vec{A} = q_0$$

$$\frac{dq_0}{dt} = \frac{d}{dt} \iint_S \vec{D} \cdot d\vec{A} = \iint_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A}$$

$$\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}$$
 Is continuous.

$$\begin{aligned} \iint_S \vec{J}_0 \cdot d\vec{A} &= -\iint_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A} \\ \iint_S (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A} &= 0 \\ -\iint_{S_1} (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A} &= \iint_{S_1} (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A} \end{aligned}$$

Maxwell's Displacement Current (位移电流)

$$\begin{aligned} \Phi_D &= \iint \vec{D} \cdot d\vec{A} && \text{electric displacement flux} \\ i_D &= \frac{d\Phi_D}{dt} = \iint \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A} && \text{displacement current} \\ \vec{j}_D &= \frac{\partial \vec{D}}{\partial t} && \text{displacement current density} \end{aligned}$$

电位移通量

位移电流

位移电流密度

New Ampere's Loop Law:

$$\oint \vec{H} \cdot d\vec{l} = i_0 + i_D = \iint (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A}$$

变化电场产生磁场

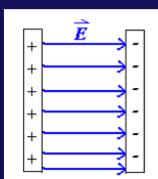
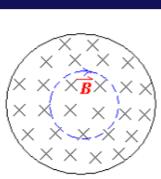
Consider in vacuum: In the wires, there is only conduction current i_0 . In the gap, there is only displacement current i_D .

$$E = \frac{\sigma_e}{\epsilon_0} = \frac{q}{\epsilon_0 A}, \quad \therefore q = \epsilon_0 A E = \epsilon_0 \Phi_E = A D \quad \vec{D} = \epsilon_0 \vec{E}$$

$$\therefore i_0 = \frac{dq}{dt} = \epsilon_0 \frac{d\Phi_E}{dt} = \frac{d\Phi_D}{dt} = i_D, \quad \vec{D} = \epsilon_0 \vec{E}$$

When the capacitor is fully charged, then $i_0=0, i_D=0$

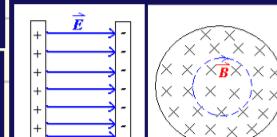
- The induced magnetic field B is produced by the changing electric field E inside the capacitor.



$$\begin{aligned} \oint \vec{H} \cdot d\vec{l} &= \iint \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A} \\ \oint \frac{\vec{B}}{\mu_0} \cdot d\vec{l} &= \iint \epsilon_0 \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A} \\ \oint \vec{B} \cdot d\vec{l} &= \mu_0 \epsilon_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A} \end{aligned}$$

$$\frac{\partial \vec{E}}{\partial t} > 0, \quad \vec{B} \text{ is clockwise, eddy magnetic field (涡旋磁场)}$$

Example Page 863, problem 38-1



A Parallel-plate capacitor

(a) Derive an expression for the induced magnetic field at radius r in the region between the plates. Consider both $r \leq R$ and $r \geq R$.

(b) Find B at $r=R$ for $dE/dt = 10^{12} \text{ V/m} \cdot \text{s}$ and $R = 5.0 \text{ cm}$.

Solution:

$$\begin{aligned} (a) \quad \oint \vec{H} \cdot d\vec{l} &= \iint (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A} \\ \text{in vacuum: } \vec{J}_0 &= 0 \\ \oint \frac{\vec{B}}{\mu_0} \cdot d\vec{l} &= \iint \epsilon_0 \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A} \\ \oint \vec{B} \cdot d\vec{l} &= \mu_0 \epsilon_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A} \end{aligned}$$

$$\begin{aligned} (b) \quad r = R, \quad \frac{dE}{dt} &= 10^{12} \text{ V/m} \cdot \text{s} \\ B &= \frac{1}{2} \epsilon_0 \mu_0 R \frac{dE}{dt} \\ &= \frac{1}{2} (8.9 \cdot 10^{-12} \text{ C}^2/\text{Nm}^2) \cdot (4\pi \cdot 10^{-7} \text{ T} \cdot \text{m} / \text{A}) \\ &\cdot (5.0 \cdot 10^{-2}) (10^{12}) \\ &= 2.8 \cdot 10^{-7} \text{ T} \\ &= 280 \text{ nT} \end{aligned}$$

$$(a). \oint \vec{H} \cdot d\vec{l} = \iint (\vec{J}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{A}$$

$$\text{in vacuum: } \vec{J}_0 = 0$$

$$\oint \frac{\vec{B}}{\mu_0} \cdot d\vec{l} = \iint \epsilon_0 \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

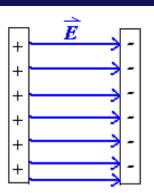
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \epsilon_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

$$r \leq R, \quad B \cdot 2\pi r = \mu_0 \epsilon_0 \frac{dE}{dt} \cdot \pi r^2, \quad B = \frac{1}{2} \epsilon_0 \mu_0 r \frac{dE}{dt}$$

$$r \geq R, \quad B \cdot 2\pi r = \mu_0 \epsilon_0 \frac{dE}{dt} \cdot \pi R^2, \quad B = \frac{1}{2} \epsilon_0 \mu_0 \frac{R^2}{r} \frac{dE}{dt}$$

They can scarcely be measured with simple apparatus.

• What is the displacement current for the situation of Sample Problem 38-1?



Solution:

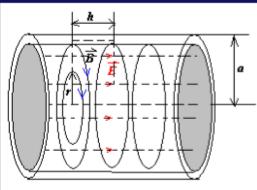
$$i_D = \frac{d\Phi_D}{dt} = \mathcal{E}_0 \frac{d\Phi_E}{dt} = \mathcal{E}_0 \pi R^2 \cdot \frac{dE}{dt}$$

$$= 8.9 \cdot 10^{-12} \cdot \pi \cdot (5 \cdot 10^{-2})^2 \cdot 10^{12}$$

$$= 0.07 \text{ A} = 70 \text{ mA}$$

i_D is a reasonably large current, but $B=280 \text{ nT}$, Why?

Under the same conditions, both kinds of current are equally effective in generating magnetic field.



A more detailed representation of a cylindrical electromagnetic resonant cavity

• From Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

B Increasing, $E \cdot h = -\frac{d\Phi_B}{dt}$

$$E = -\frac{1}{h} \frac{d\Phi_B}{dt}$$

• From Ampere's Loop Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \mathcal{E}_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

$$B \cdot 2\pi r = \mu_0 \mathcal{E}_0 \frac{d\Phi_E}{dt}$$

$$B = \frac{\mu_0 \mathcal{E}_0}{2\pi r} \frac{d\Phi_E}{dt}$$

38-3 Maxwell's Equations

• In vacuum:

The Gauss' Law of Electricity: $\iint \vec{E} \cdot d\vec{A} = \frac{q_0}{\mathcal{E}_0}$

The Gauss' Law of Magnetism: $\iint \vec{B} \cdot d\vec{A} = 0$

Faraday's Law of Induction: $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$

Ampere's Law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 i + \mu_0 \mathcal{E}_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$
(As extended by Maxwell)

• In the dielectric and magnetic materials

$$\iint \vec{D} \cdot d\vec{A} = q_0$$

$$\iint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\oint \vec{H} \cdot d\vec{l} = i_0 + \iint \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A}$$

$$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P} = \kappa_e \mathcal{E}_0 \vec{E}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \kappa_m \mu_0 \vec{H}$$

$$\vec{j}_0 = \sigma \vec{E}$$

$$\begin{cases} \nabla \cdot \vec{D} = \rho_{e0} \\ \nabla \cdot \vec{B} = 0 \\ \nabla \cdot \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{H} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t} \end{cases}$$

电磁波

2. The emitting of Electromagnetic Wave 电磁波的发射

The condition of emitting electromagnetic wave:

(1) The frequency of electromagnetic wave has to be very high:

$$\frac{dW}{dt} \propto f^4 \quad f > 10^5 \text{ Hz}$$

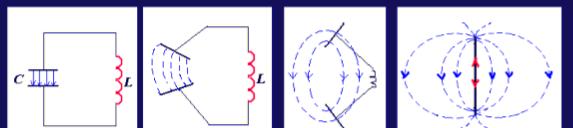
$$\therefore f_0 = \frac{\omega}{2\pi} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

$\therefore L, C$ have to be very small

(2) The LC circuit must be opened:

L, C are the distributed element

$$f_0 = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$



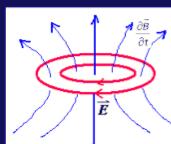
L, C is decreasing, the circuit is opening.

→ A wire, i surge back and forth in the wire.

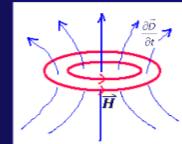
Dipole antenna (偶极振子天线)

3. The transmission of EMW (电磁波的传播)

- Transmission Medium? Ether, Aether (以太)
- It is not necessary to have medium for the transmission of electromagnetic wave.



Changing a magnetic field produce an electric field



Changing an electric field produce a magnetic field

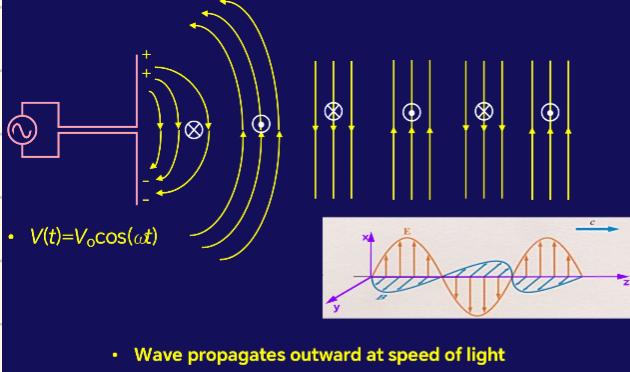
$$\oint \vec{E} \cdot d\vec{l} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\oint \vec{H} \cdot d\vec{l} = \iint \frac{\partial \vec{D}}{\partial t} \cdot d\vec{A}$$

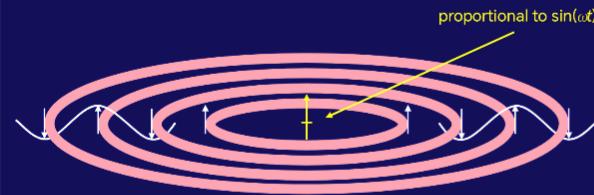
Vortex electric field, Vortex magnetic field (涡旋电场和涡旋磁场)

← → Electromagnetic Wave

Radiation from oscillating dipole



Dipole radiation pattern



- Oscillating electric dipole (振荡的电偶极矩) generates e-m radiation that is **linearly polarized** (线偏振) in the direction of the dipole.
- Radiation pattern is doughnut shaped & outward traveling
 - zero amplitude above and below dipole.
 - maximum amplitude in-plane.

39-4 The properties of electromagnetic wave

At distant from the wave source, there are 5 properties

In free space (自由空间): $\rho_{e0} = 0, \vec{j}_0 = 0$

1. Horizontal Wave (横波) $\vec{E} \perp \vec{k}, \vec{H} \perp \vec{k}$

2. $\vec{E} \perp \vec{H}$

3. E, H are in phase (同相)

4. Right-Hand rule $\sqrt{\kappa_e \epsilon_0} E_0 = \sqrt{\kappa_m \mu_0} H_0$

5. The speed of electromagnetic wave

$$\text{in the air (vacuum), } \kappa_e = \kappa_m = 1, \quad v = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \cdot 10^8 \text{ m/s}$$

$$v = \frac{1}{\sqrt{\kappa_e \epsilon_0 \kappa_m \mu_0}}$$

$$\oint \vec{D} \cdot d\vec{A} = \rho_0$$

$$\nabla \cdot \vec{D} = \rho_{e0}$$

自由电荷体密度

$$\text{真空中: } \nabla \cdot \vec{D} = \rho_{e0} \xrightarrow{\rho_{e0}=0} \nabla \cdot \vec{E} = 0$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \vec{B} = 0 \xrightarrow{\nabla \cdot \vec{B} = 0}$$

$$\oint \vec{E} \cdot d\vec{l} = - \iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t} \xrightarrow{\vec{B} = \kappa_m \mu_0 \vec{H}} \nabla \times \vec{E} = - \kappa_m \mu_0 \frac{\partial \vec{H}}{\partial t}$$

$$\oint \vec{H} \cdot d\vec{l} = i_0 + \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

$$\nabla \times \vec{H} = \vec{j}_{e0} + \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{j}_{e0} + \frac{\partial \vec{E}}{\partial t} \xrightarrow{j_{e0}=0} \nabla \times \vec{H} = \kappa_e \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

统-成 \vec{E} 与 \vec{H} $\vec{B} = \kappa_m \mu_0 \vec{H}$ $\vec{D} = \kappa_e \epsilon_0 \vec{E}$

$$\nabla \cdot \vec{E} = 0$$

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$\Rightarrow \nabla \cdot \vec{B} = 0 \quad \nabla \cdot \vec{H} = 0$$

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

$$\nabla \times \vec{E} = - \kappa_m \mu_0 \frac{\partial \vec{H}}{\partial t}$$

$$\left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{array} \right| = - \kappa_m \mu_0 \left(\frac{\partial H_x}{\partial t} \vec{i} + \frac{\partial H_y}{\partial t} \vec{j} + \frac{\partial H_z}{\partial t} \vec{k} \right)$$

$$\nabla \times \vec{H} = \kappa_e \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{array} \right| = \kappa_e \epsilon_0 \left(\frac{\partial E_x}{\partial t} \vec{i} + \frac{\partial E_y}{\partial t} \vec{j} + \frac{\partial E_z}{\partial t} \vec{k} \right)$$

For the plane wave (平面波)

39-5 例題 例題 例題

因为平面波沿 z 方向传播 $\therefore \vec{E}$ 与 \vec{H} 分布与 x, y 无关, 只随 z 和 t 变化 $\frac{\partial E_x}{\partial x} = 0, \frac{\partial E_y}{\partial y} = 0 \Rightarrow \frac{\partial E_z}{\partial t} = \frac{\partial H_z}{\partial z} = \frac{\partial E_z}{\partial z} = \frac{\partial H_z}{\partial t} = 0$

$\Rightarrow H_z(z, t) = \text{常数}, E_z(z, t) = \text{常数} \Rightarrow \vec{E} = \vec{E}_x + \vec{E}_y, \vec{H} = \vec{H}_x + \vec{H}_y \Rightarrow \vec{E} \perp \vec{H} \quad (\text{即垂直于 } \vec{R})$

$$\begin{aligned} \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} &= 0 & (1) \\ \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} &= -\kappa_m \mu_0 \frac{\partial H_x}{\partial t} & (2-1) \\ \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} &= -\kappa_m \mu_0 \frac{\partial H_y}{\partial t} & (2-2) \\ \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} &= -\kappa_m \mu_0 \frac{\partial H_z}{\partial t} & (2-3) \\ \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} &= 0 & (3) \\ \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} &= \kappa_e \epsilon_0 \frac{\partial E_x}{\partial t} & (4-1) \\ \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} &= \kappa_e \epsilon_0 \frac{\partial E_y}{\partial t} & (4-2) \\ \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} &= \kappa_e \epsilon_0 \frac{\partial E_z}{\partial t} & (4-3) \end{aligned}$$

(2) $\vec{E} \perp \vec{H}$

$$\begin{aligned} E_z &= 0 \\ H_z &= 0 \end{aligned}$$

$$\begin{aligned} -\frac{\partial E_y}{\partial z} &= -\kappa_m \mu_0 \frac{\partial H_x}{\partial t} & (2-1) \\ \frac{\partial E_x}{\partial z} &= -\kappa_m \mu_0 \frac{\partial H_y}{\partial t} & (2-2) \\ -\frac{\partial H_y}{\partial z} &= \kappa_e \epsilon_0 \frac{\partial E_x}{\partial t} & (4-1) \\ \frac{\partial H_x}{\partial z} &= \kappa_e \epsilon_0 \frac{\partial E_y}{\partial t} & (4-2) \end{aligned}$$

$$\begin{aligned} \frac{\partial E_y}{\partial z} &= \kappa_m \mu_0 \frac{\partial H_x}{\partial t} & (2-1') \\ \frac{\partial E_x}{\partial z} &= -\kappa_m \mu_0 \frac{\partial H_y}{\partial t} & (2-2') \\ -\frac{\partial H_y}{\partial z} &= -\kappa_e \epsilon_0 \frac{\partial E_x}{\partial t} & (4-1') \\ \frac{\partial H_x}{\partial z} &= \kappa_e \epsilon_0 \frac{\partial E_y}{\partial t} & (4-2') \end{aligned}$$

Due to x, y axis is defined, (任意定义),

Assume: \vec{E} \perp x axis, $\Rightarrow E_x \neq 0, E_y = 0$

$$(2-1') \Rightarrow \frac{\partial H_x}{\partial t} = 0 \quad \therefore H_x(z, t) = \text{constant} = 0 \quad \therefore \vec{E} \perp \vec{H}$$

If \vec{E} is in the x axis, then \vec{H} is in the y axis.

假设 $E_x \neq 0, E_y = 0$

$\Rightarrow \frac{\partial H_x}{\partial z} = 0, \frac{\partial H_x}{\partial t} = 0 \quad H_x(z, t) = \text{常数} \Rightarrow H_y \neq 0$
assume $= 0$

$$\Rightarrow \vec{E} = E_x \vec{i} \quad \vec{H} = H_y \vec{j} \quad \vec{E} \perp \vec{H}$$

$$\begin{aligned} \frac{\partial E_y}{\partial z} &= \kappa_m \mu_0 \frac{\partial H_x}{\partial t} & (2-1') \\ \frac{\partial E_x}{\partial z} &= -\kappa_m \mu_0 \frac{\partial H_y}{\partial t} & (2-2') \\ \frac{\partial H_y}{\partial z} &= -\kappa_e \epsilon_0 \frac{\partial E_x}{\partial t} & (4-1') \\ \frac{\partial H_x}{\partial z} &= \kappa_e \epsilon_0 \frac{\partial E_y}{\partial t} & (4-2') \end{aligned}$$

(3), (4), (5): $E_x(z, t), H_y(z, t)$

$$\frac{\partial^2 E_x}{\partial z^2} = -\kappa_m \mu_0 \frac{\partial}{\partial t} \cdot \frac{\partial H_y}{\partial z} = \kappa_m \mu_0 \kappa_e \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

$$\begin{cases} E_x = E_{x0} e^{i(\omega t - kz)} \\ H_y = H_{y0} e^{i(\omega t - kz)} \end{cases}$$

ω ----- angular frequency
 k ----- Wave number

$$\omega = \frac{2\pi}{T}, \quad k = \frac{2\pi}{\lambda}$$

$$\begin{aligned} k^2 &= \kappa_e \epsilon_0 \kappa_m \mu_0 \omega^2 \\ k &= \sqrt{\kappa_e \epsilon_0 \kappa_m \mu_0 \omega} \end{aligned}$$

$$\begin{cases} \frac{\partial^2 E_x}{\partial z^2} - \kappa_e \epsilon_0 \kappa_m \mu_0 \frac{\partial^2 E_x}{\partial t^2} = 0 \\ \frac{\partial^2 H_y}{\partial z^2} - \kappa_e \epsilon_0 \kappa_m \mu_0 \frac{\partial^2 H_y}{\partial t^2} = 0 \end{cases} \Rightarrow \begin{cases} E_x = E_{x0} e^{i(\omega t - kz)} \\ H_y = H_{y0} e^{i(\omega t - kz)} \end{cases}$$

$$\begin{aligned} k^2 &= \kappa_e \epsilon_0 \kappa_m \mu_0 \omega^2 \\ k &= \sqrt{\kappa_e \epsilon_0 \kappa_m \mu_0 \omega} \end{aligned}$$

The speed of wave:
(波速)

$$\omega t - kz = \text{constant}$$

$$v = \frac{dz}{dt} = \frac{\omega}{k} = \frac{1}{\sqrt{\kappa_e \epsilon_0 \kappa_m \mu_0 \omega}}$$

In vacuum:

$$\kappa_e = 1, \kappa_m = 1$$

$$\epsilon_0 = 8.9 \cdot 10^{-12} C^2 / N \cdot m^2 \quad \text{"experimental result"}$$

$$\mu_0 = 4\pi \cdot 10^{-7} Wb / A \cdot m \quad \text{"convention"}$$

$$v = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \cdot 10^8 m/s$$

一维波动方程: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \Rightarrow \frac{1}{v^2} = \kappa_e \epsilon_0 \kappa_m \mu_0$

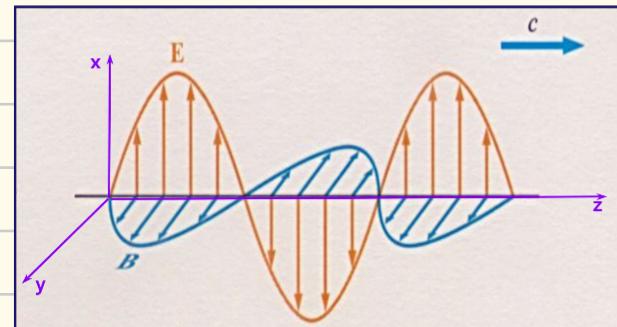
$$\begin{cases} (2-2') \Rightarrow \frac{\partial E_x}{\partial z} = -\kappa_m \mu_0 \frac{\partial H_y}{\partial t} \\ (4-2') \Rightarrow \frac{\partial H_y}{\partial z} = -\kappa_m \mu_0 \frac{\partial E_x}{\partial t} \end{cases}$$

$$\begin{cases} E_x = E_{x0} e^{i(\omega t - kz)} \\ H_y = H_{y0} e^{i(\omega t - kz)} \end{cases}$$

$$\begin{cases} \sqrt{\kappa_e \epsilon_0} E_0 = \sqrt{\kappa_m \mu_0} H_0 \\ \varphi_E = \varphi_H \end{cases}$$

In vacuum

$$\begin{aligned} \kappa_m &= \kappa_e = 1 \\ \sqrt{\epsilon_0} E_0 &= \sqrt{\mu_0} H_0 \\ E_0 &= \frac{\mu_0 H_0}{\sqrt{\epsilon_0 \mu_0}} = c B_0 \\ B_0 &= \frac{E_0}{c} \end{aligned}$$

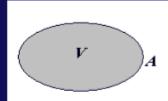


39-5 The Energy Flux Density and Momentum of the Electromagnetic Wave (电磁波的能流密度和动量)

1. The energy principle and the Energy Flux Density vector of Electromagnetic Wave

In the space:

$$U = \iiint \left(\frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \mu_0 B^2 \right) dv$$



$$q_0, \vec{j}_0 \text{ or no } q_0, \vec{j}_0$$

真空中

$$\kappa_e, \kappa_m = 1$$

$$U = U_E + U_B = \iiint \left(\frac{1}{2} \vec{D} \cdot \vec{E} + \frac{1}{2} \vec{B} \cdot \vec{H} \right) dv$$

$$\vec{D} = \kappa_e \epsilon_0 \vec{E}, \vec{B} = \kappa_m \mu_0 \vec{H}$$

At not steady condition: $\vec{E}(t), \vec{H}(t)$

The rate of the electromagnetic energy changing:

$$\begin{aligned} \frac{dU}{dt} &= \frac{d}{dt} \iiint \left(\frac{1}{2} \vec{D} \cdot \vec{E} + \frac{1}{2} \vec{B} \cdot \vec{H} \right) dv = \kappa_e \epsilon_0 \frac{\partial}{\partial t} (\vec{E} \cdot \vec{E}) + \kappa_m \mu_0 \frac{\partial}{\partial t} (\vec{H} \cdot \vec{H}) \\ &= \frac{1}{2} \iiint \frac{\partial}{\partial t} (\vec{D} \cdot \vec{E} + \vec{B} \cdot \vec{H}) dv \\ \text{Maxwell's Eq.s:} \quad &\frac{\partial \vec{D}}{\partial t} = \nabla \times \vec{H} - \vec{j}_0 \\ &\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \end{aligned}$$

$$\vec{E} \cdot (\nabla \times \vec{H}) - \vec{H} \cdot (\nabla \times \vec{E}) = -\nabla \cdot (\vec{E} \times \vec{H})$$

$$\begin{aligned} &= 2\vec{E} \cdot (\nabla \times \vec{H}) - 2\vec{H} \cdot (\nabla \times \vec{E}) \\ &= 2[\vec{E} \cdot (\nabla \times \vec{H}) - \vec{H} \cdot (\nabla \times \vec{E}) - \vec{j}_0 \cdot \vec{E}] \\ &= -2\nabla \cdot (\vec{E} \times \vec{H}) - 2\vec{j}_0 \cdot \vec{E} \end{aligned}$$

$$\begin{aligned} \frac{dU}{dt} &= -\iiint \nabla \cdot (\vec{E} \times \vec{H}) dv - \iiint (\vec{j}_0 \cdot \vec{E}) dv \\ &= -\iint (\vec{E} \times \vec{H}) \bullet d\vec{A} - \iiint (\vec{j}_0 \cdot \vec{E}) dv \end{aligned}$$

$$\begin{aligned} \frac{dU}{dt} &= -\iiint \nabla \cdot (\vec{E} \times \vec{H}) dv - \iiint (\vec{j}_0 \cdot \vec{E}) dv \\ &= -\iint (\vec{E} \times \vec{H}) \bullet d\vec{A} - \iiint (\vec{j}_0 \cdot \vec{E}) dv \end{aligned}$$

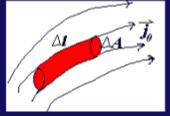
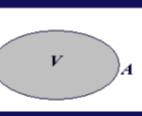
The second term

$$\iiint (\vec{j}_0 \cdot \vec{E}) dv$$

Ohm's Law in a battery

$$\vec{j}_0 = \sigma(\vec{E} + \vec{K}), \quad \therefore \vec{E} = \frac{1}{\sigma} \vec{j}_0 - \vec{K} = \rho \vec{j}_0 - \vec{K}$$

$$\begin{aligned} \iiint (\vec{j}_0 \cdot \vec{E}) dv &= (\vec{j}_0 \cdot \vec{E}) \Delta A \cdot \Delta l \\ &= \vec{j}_0 \bullet (\rho \vec{j}_0 - \vec{K}) \Delta A \cdot \Delta l \\ &= \rho j_0^2 \Delta A \cdot \Delta l - \vec{j}_0 \bullet \vec{K} \Delta A \cdot \Delta l \\ &= \rho \frac{\Delta I}{\Delta A} (j_0 \Delta A)^2 - (j_0 \Delta A)(\vec{K} \bullet \Delta \vec{l}) \\ &= R j_0^2 - j_0 \Delta \varepsilon \end{aligned}$$



$$\iiint (\vec{j}_0 \cdot \vec{E}) dv = j_0^2 R - j_0 \Delta \varepsilon$$

电导率

$$\text{The Joule Thermal per unit time}$$

$$\text{The work done by the source per unit time}$$

$$\iiint (\vec{j}_0 \cdot \vec{E}) dv = Q - P$$

$$\begin{aligned} \frac{dU}{dt} &= -\iiint \nabla \cdot (\vec{E} \times \vec{H}) dv - \iiint (\vec{j}_0 \cdot \vec{E}) dv \\ &= -\iint (\vec{E} \times \vec{H}) \bullet d\vec{A} - \iiint (\vec{j}_0 \cdot \vec{E}) dv \end{aligned}$$

The first term

$$\iint (\vec{E} \times \vec{H}) \bullet d\vec{A}$$

Introduce new vector:

$$\vec{S} = \vec{E} \times \vec{H}$$

Poynting Vector (玻印廷矢量)

$$\frac{dU}{dt} = -\iint \vec{S} \bullet d\vec{A} - Q + P$$

The electromagnetic energy flowing out from the surface A of a volume V per unit time.

The Electromagnetic Energy Flux (电磁波能量通量).

P: 电源做功功率 Q: 焦耳热功率

$\vec{S} = \vec{E} \times \vec{H}$ 玻印廷矢量: 单位时间内通过单位面积的电磁能量.

$$U_E = \frac{1}{2} \epsilon_0 E^2, \quad U_B = \frac{B^2}{2 \mu_0}; \quad \sqrt{\kappa_m \mu_0} H = \sqrt{\kappa_e \epsilon_0} E$$

$$\sqrt{\mu_0} H = \sqrt{\epsilon_0} E$$

$$\therefore U_E = \frac{1}{2} \epsilon_0 E^2 = \frac{1}{2} \epsilon_0 \cdot c^2 B^2 = \frac{1}{2} \epsilon_0 \cdot \frac{1}{\epsilon_0 \mu_0} B^2 = \frac{B^2}{2 \mu_0} = U_B \quad \therefore \text{电磁波中电场能量密度与磁场能量密度相等.}$$

$$U = U_B + U_E = \epsilon_0 E^2$$

$$\Rightarrow \text{平均能量密度: } \langle u \rangle = \epsilon_0 \langle E^2 \rangle = \epsilon_0 E_{\max}^2 \langle \sin^2(\omega t - kx) \rangle = \frac{\epsilon_0 E_{\max}^2}{2}$$

$$E_{\text{rms}} = \frac{E_{\max}}{\sqrt{2}}, \quad \langle u \rangle = \epsilon_0 E_{\text{rms}}^2$$

$$B_0 = \frac{E_0}{c}$$

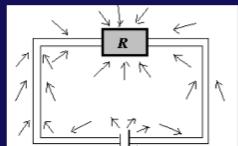
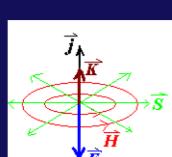
$$\text{波的强度 } I = c \langle u \rangle = c \cdot \frac{\epsilon_0 E_{\max}^2}{2} \quad I: \text{单位时间内通过单位面积的电磁能}$$

$$\left\{ \begin{array}{l} I = c \langle u \rangle \\ \langle u \rangle = \epsilon_0 \langle E^2 \rangle = \frac{B^2}{\mu_0} \Rightarrow \epsilon_0 E_{\text{rms}}^2 = \frac{B_{\text{rms}}^2}{\mu_0} \end{array} \right. \quad B_{\text{rms}} = \frac{E_{\text{rms}}}{c}$$

$$I = c \cdot \epsilon_0 \cdot E_{\text{rms}}^2 = \frac{1}{\mu_0 c} E_{\text{rms}}^2$$

The energy transport in DC circuit

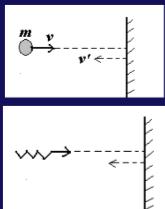
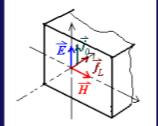
This result can be applied to the steady field.



In the seat

2. Momentum and Pressure of Radiation

Beside carrying energy, electromagnetic waves may also transport linear momentum.



$$\vec{J}_0 = \sigma \vec{E}$$

$$\vec{f}_L = -e\vec{v} \times \vec{B} = -\mu_0 e\vec{v} \times \vec{H}$$

The force exerted on the metal plate.

The force on the area ΔA metal plate:

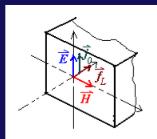
$$\Delta \vec{F} \cdot c \Delta t = (\vec{S}_{in} - \vec{S}_{ref}) \Delta A \cdot \Delta t$$

$$\therefore \Delta \vec{F} = \frac{1}{c} (\vec{S}_{in} - \vec{S}_{ref}) \Delta A$$

The pressure of radiation:

$$P = \frac{|\Delta \vec{F}|}{\Delta A} = \frac{1}{c} (|\vec{S}_{in}| + |\vec{S}_{ref}|)$$

The force on the area ΔA metal plate:



$$\Delta \vec{F} \cdot c \Delta t = (\vec{S}_{in} - \vec{S}_{ref}) \Delta A \cdot \Delta t$$

$$\therefore \Delta \vec{F} = \frac{1}{c} (\vec{S}_{in} - \vec{S}_{ref}) \Delta A$$

The change of momentum of EMW:

$$\Delta \vec{G}_p = \Delta \vec{F} \cdot \Delta t = \frac{1}{c} (\vec{S}_{in} - \vec{S}_{out}) \Delta A \cdot \Delta t$$

$$\Delta \vec{G} = -\Delta \vec{G}_p = -\Delta \vec{F} \cdot \Delta t = \frac{1}{c} (\vec{S}_{out} - \vec{S}_{in}) \Delta A \cdot \Delta t$$

The volume of EMW in Δt : $\Delta V = \Delta A \cdot c \Delta t$

$$\vec{g}_{out} = \frac{\vec{S}_{out}}{c^2}$$

The momentum density of reflected wave.

$$\vec{g}_{in} = \frac{\vec{S}_{in}}{c^2}$$

The momentum density of incident wave.

$$\Delta \vec{g} = \frac{\Delta \vec{G}}{\Delta V} = \frac{1}{c} (\vec{S}_{out} - \vec{S}_{in}) \frac{\Delta A \cdot \Delta t}{\Delta A \cdot c \Delta t}$$

$$= \frac{1}{c^2} (\vec{S}_{out} - \vec{S}_{in})$$

The momentum density (动量密度) of EMW: $\vec{g} = \frac{1}{c^2} \vec{S} = \frac{1}{c^2} (\vec{E} \times \vec{H})$

Light Pressure

The pressure: For reflectivity 100%

$$P = \frac{2}{c} |\vec{S}_{in}| = \frac{2}{c} EH$$

For reflectivity 0% for Black Body

$$P = \frac{1}{c} |\vec{S}_{in}| = \frac{1}{c} EH$$

39-8 The Doppler (多普勒效应) effect for light wave

1. Sound wave, observer fixed, source moving away

$$f = f_0 \frac{1}{1 + u/v}$$

2. Sound wave, source fixed, observer moving away

$$f = f_0 (1 - u/v)$$

3. Light wave, source and observer separating (红移现象)

$$f = f_0 \frac{1 - u/c}{\sqrt{1 - u^2/c^2}} = f_0 \sqrt{\frac{1 - u/c}{1 + u/c}}$$

➤ Transverse (横向)Doppler effect:

At $\theta = \pi/2$, the light traveling perpendicular to the relative motion of the frames,

$$f = f_0 \sqrt{1 - u^2/c^2}$$

purely relativistic effect, it leads to red-shift of the light.

$$f = f_0 \sqrt{\frac{1 - u^2/c^2}{1 + u^2/c^2}}$$

where f_0 frequency measured in the frame the source is fixed.

➤ Longitudinal (纵向)Doppler effect:

(a) the source approaching ($\theta = \pi$)

$$f = f_0 \sqrt{\frac{1 + u/c}{1 - u/c}}$$

(b) the source leaving ($\theta = 0$)

$$f = f_0 \sqrt{\frac{1 - u/c}{1 + u/c}}$$

Index of Refraction(折射率)

- The wave incident on an interface can not only reflect, but it can also propagate into the second material.
- The speed of an electromagnetic wave is **different** in matter than it is in vacuum.
 - Recall, we derived from Maxwell's eqns in vacuum: $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$

How are Maxwell's eqns in matter different?

$\kappa_m \approx 1$ (for most materials)

$$v = \frac{1}{\sqrt{\kappa_m \epsilon_0 \mu_0}} \approx \frac{1}{\sqrt{\mu_0 \epsilon_0}} \equiv \frac{c}{\sqrt{\kappa_e}}$$

- Therefore, the speed of light in matter is related to the speed of light in vacuum by:

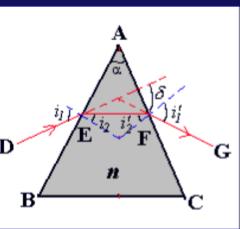
$$v = \frac{c}{n}$$

where n = "index of refraction" of the material: $n \approx \sqrt{\kappa_e} > 1$

The index of refraction is frequency dependent: For example, in glass

$$n_{\text{blue}} = 1.53 \quad n_{\text{red}} = 1.52$$

A Prism (棱镜)



Changing i_1 , there is smallest angle δ

The condition is:

$$\begin{aligned} \delta &= (i_1 - i_2) + (i_1' - i_2') \\ &= (i_1 + i_1') - (i_2 + i_2') \\ \alpha &= i_2 + i_2' \\ \therefore \delta &= (i_1 + i_1') - \alpha \end{aligned}$$

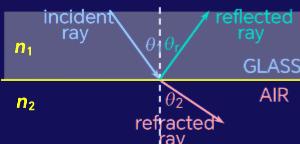
$$i_1 = i_1' \text{ or } i_2 = i_2'$$

$$n = \frac{\sin \frac{\alpha + \delta_{\min}}{2}}{\sin \frac{\alpha}{2}}$$

The measurement of index of refraction for the prism.

2. Total Internal Reflection(全反射)

- Consider light moving from glass ($n_1=1.5$) to air ($n_2=1.0$)



$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{n_1}{n_2} > 1 \rightarrow \theta_2 > \theta_1$$

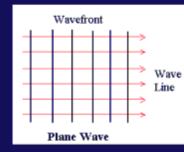
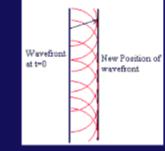
i.e., light is bent away from the normal as θ_1 gets bigger, θ_2 gets bigger, but θ_2 can never get bigger than 90° !!

In general, if $\sin \theta_1 > (n_2 / n_1)$, we have NO refracted ray; we have **TOTAL INTERNAL REFLECTION**.

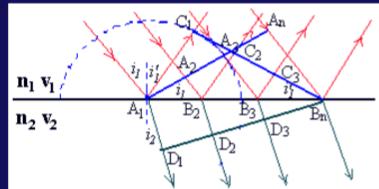
For example, light in water which is incident on an air surface with angle $\theta_1 > \theta_c = \sin^{-1}(1.0/1.5) = 41.8^\circ$ will be totally reflected. This property is the basis for the optical fibers used in communication.

40-3 Huygen's Principle(惠更斯原理)

All points on a wavefront(波前) can be considered as point sources for the production of spherical secondary wavelets(子波). After a time t the new position of a wavefront is the surface tangent to the secondary wavelets.



Deriving the of Reflection and Refraction by Huygen's Principle



$$\begin{aligned} t_2 &= \frac{A_2 B_2}{v_1} & B_2 \\ t_3 &= \frac{A_3 B_3}{v_1} & B_3 \\ \dots & & \\ t_n &= \frac{A_n B_n}{v_1} & B_n \end{aligned}$$

$$\begin{aligned} A_1 C_1 &= A_n B_n = v_1 t_n \\ \Delta A_1 C_1 B_n &\cong \Delta B_n A_n A_1 \\ \therefore \angle A_1 A_n B_n &= \angle C_1 B_n A_1 \\ \Rightarrow i_1' &= i_1 \text{ the law of reflection} \end{aligned}$$

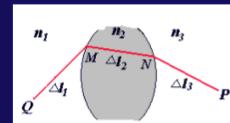
$$n = \frac{c}{v}, \quad \therefore \frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} \text{ The law of refraction}$$

$$\begin{aligned} \angle D_1 B_n A_1 &= i_2 \\ \sin i_2 &= \frac{A_1 D_1}{A_1 B_n} \\ \sin i_2 &= \frac{A_n B_n}{A_1 B_n} \\ \therefore \frac{\sin i_1}{\sin i_2} &= \frac{A_n B_n}{A_1 D_1} = \frac{v_1 t}{v_2 t} = \frac{v_1}{v_2} \end{aligned}$$

40-4 Fermat's Principle(费马原理)

1. The Optical Path Length (光程)

$$t_{QP} = \frac{\overline{QP}}{c}$$



$$\begin{aligned} \text{In several medium :} \\ t_{QP} &= \frac{\Delta_1}{v_1} + \frac{\Delta_2}{v_2} + \frac{\Delta_3}{v_3} = \sum_i \frac{\Delta_i}{v_i} \\ &= \sum_i \frac{n_i \Delta_i}{c} = \frac{(QMNP)}{c} \end{aligned}$$

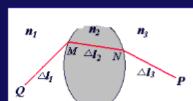
The optical path length:

$$(QP) = c \cdot t_{QP} = \sum_i n_i \Delta_i$$

$$(QP) = \int_Q^P n dl$$

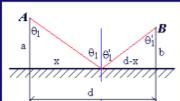
2. The Fermat's Principle (费马原理)

A light ray traveling from one fixed point to another fixed points follows a path such that, compared with nearby paths, the time required is either a minimum, or a maximum or remains unchanged. (that is stationary)

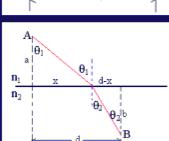


$$\delta(QP) = \delta \left[\int_Q^P n dl \right] = 0$$

3. Deriving the law of reflection and refraction.

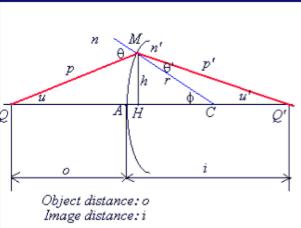


$$\begin{aligned} L &= \sqrt{a^2 + x^2} + \sqrt{b^2 + (d-x)^2} \\ \frac{dL}{dx} &= \frac{1}{2} \cdot \frac{2x}{\sqrt{a^2 + x^2}} - \frac{1}{2} \cdot \frac{2(d-x)}{\sqrt{b^2 + (d-x)^2}} = 0 \\ \frac{x}{\sqrt{a^2 + x^2}} &= \frac{(d-x)}{\sqrt{b^2 + (d-x)^2}} \\ \sin \theta_1 &= \sin \theta_1, \quad \theta_1 = \theta_1 \end{aligned}$$



$$\begin{aligned} L &= n_1 \sqrt{a^2 + x^2} + n_2 \sqrt{b^2 + (d-x)^2} \\ \frac{dL}{dx} &= \frac{1}{2} \cdot \frac{n_1 2x}{\sqrt{a^2 + x^2}} - \frac{1}{2} \cdot \frac{n_2 2(d-x)}{\sqrt{b^2 + (d-x)^2}} = 0 \\ n_1 \frac{x}{\sqrt{a^2 + x^2}} &= n_2 \frac{(d-x)}{\sqrt{b^2 + (d-x)^2}}, \quad n_1 \sin \theta_1 = n_2 \sin \theta_2 \end{aligned}$$

1. Refraction on a spherical surface:



$$\begin{cases} \frac{p}{\sin \phi} = \frac{o+r}{\sin \theta} = \frac{r}{\sin u} \\ \frac{p'}{\sin \phi} = \frac{i-r}{\sin \theta'} = \frac{r}{\sin u'} \end{cases}$$

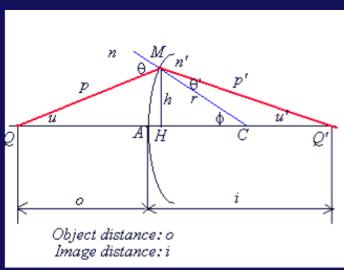
$$n \sin \theta = n' \sin \theta' \\ \theta - u = \theta' + u' = \phi$$

$$\begin{cases} \frac{p}{\sin \phi} = \frac{\sin \phi}{\sin \theta} \\ \frac{p'}{\sin \phi} = \frac{\sin \phi}{\sin \theta'} \\ \therefore \frac{p}{n(o+r)} = \frac{p'}{n'(i-r)} \end{cases}$$

$$\begin{cases} p^2 = (o+r)^2 + r^2 - 2r(o+r) \cos \phi = o^2 + 4r(o+r) \sin^2 \frac{\phi}{2} \\ p'^2 = (i-r)^2 + r^2 + 2r(i-r) \cos \phi = i^2 - 4r(i-r) \sin^2 \frac{\phi}{2} \end{cases}$$

$$\cos \phi = 1 - 2 \sin^2 \frac{\phi}{2}$$

$$\Rightarrow \frac{o^2}{n^2(o+r)^2} - \frac{i^2}{n^2(i-r)^2} = -4r \sin^2 \frac{\phi}{2} \left[\frac{1}{n^2(o+r)} + \frac{1}{n^2(i-r)} \right]$$



$$\frac{o^2}{n^2(o+r)^2} - \frac{i^2}{n^2(i-r)^2} = -4r \sin^2 \frac{\phi}{2} \left[\frac{1}{n^2(o+r)} + \frac{1}{n^2(i-r)} \right]$$

This result indicates that object Q point can not be imaged into Q' point through a spherical surface.

There are only two cases that Q point can be imaged into one point Q':

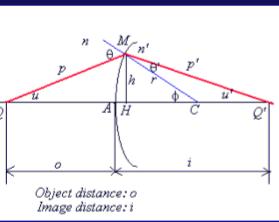
$$\begin{cases} \frac{o^2}{n^2(o+r)^2} - \frac{i^2}{n^2(i-r)^2} = 0 \\ \frac{1}{n^2(o+r)} + \frac{1}{n^2(i-r)} = 0 \end{cases}$$

o , and i are determined at same time. For one spherical surface, there is only one group points. (齐明点)

Another case is for paraxial rays (傍轴近似)

$$h^2 \ll o^2, i^2, r^2$$

2. Image Formation Equation (成像公式)



$$\frac{o^2}{n^2(o+r)^2} - \frac{i^2}{n^2(i-r)^2} = -4r \sin^2 \frac{\phi}{2} \left[\frac{1}{n^2(o+r)} + \frac{1}{n^2(i-r)} \right]$$

For paraxial rays (傍轴光线):

$$\begin{aligned} u^2, u'^2, \phi^2 \ll 1, \Rightarrow \theta^2, \theta'^2 \ll 1 \\ \Rightarrow \sin^2 \frac{\phi}{2} \approx \left(\frac{\phi}{2} \right)^2 \rightarrow 0 \end{aligned}$$

For any Q point (object distance o , there is image Q' point (image distance i).

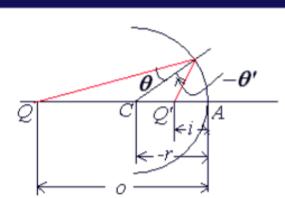
The first focal point: 第一焦點 $i \rightarrow \infty, o = f = \frac{n}{n'-n} r$

The second focal point: 第二焦點 $o \rightarrow \infty, i = f' = \frac{n'}{n'-n} r$

$$\frac{f}{f'} = \frac{n}{n'}, \quad \frac{f}{o} + \frac{f'}{i} = 1$$

For the reflection at the surface of a mirror (球面反射成像)

(2') If the Q' point is at the left of A point (实像), $i > 0$
If the Q' point is at the right of A point (虚像), $i < 0$



$$\begin{aligned} n \sin \theta = n' \sin \theta' \\ \text{if } \theta > 0, \text{ then } \theta' < 0 \\ n = -n' \end{aligned}$$

$$\frac{n'}{i} + \frac{n}{o} = \frac{n'-n}{r}$$

$$\begin{aligned} \frac{f}{o} + \frac{f'}{i} = 1; \\ \frac{(-r)}{2} + \frac{r}{(-i)} = 1 \\ \Rightarrow \frac{1}{o} + \frac{1}{i} = -\frac{2}{r} \end{aligned}$$

$$f = \frac{n}{n'-n} r = -\frac{r}{2}$$

$$f' = \frac{n'}{n'-n} r = \frac{1}{2} r$$

$$\frac{1}{o} + \frac{1}{i} = -\frac{2}{r}$$



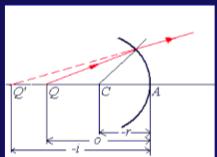
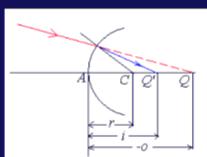
3. Sign Conventions (符号约定)

If we suggest that the incident light ray from left to right.

(1) If the Q point is at the left of A point (实物) $o > 0$
If the Q point is at the right of A point (虚物) $o < 0$

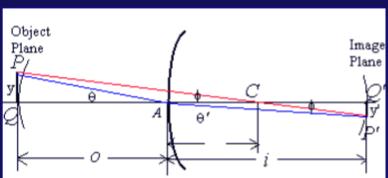
(2) If the Q' point is at the left of A point (虚像) $i < 0$
If the Q' point is at the right of A point (实像) $i > 0$

(3) If the C point (球心) is at the left of A point (凹), $r < 0$
If the C point (球心) is at the right of A point (凸), $r > 0$



虚物成实像

4. The image formation of paraxial object point and lateral magnification (傍轴物点成像和横向放大率)



$$\text{Paraxial Ray: } y^2, y' \\ 2 \ll o^2, i^2, r^2$$

Sign convention: (4) If P (or P') is above the light axis, y (or y') > 0
If P (or P') is below the light axis, y (or y') < 0

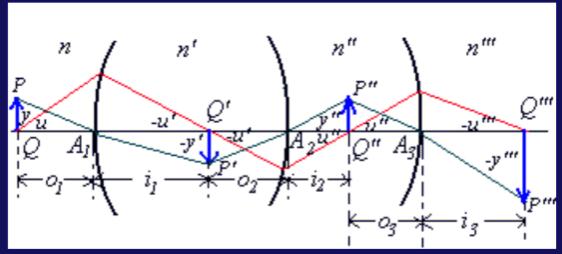
$$\text{Lateral Magnification: } m = \frac{\text{Lateral Size of Image}}{\text{Lateral Size of Object}} = \frac{y'}{y}$$

$$\text{Paraxial Ray: } n\theta \approx n'\theta', y \approx o\cdot\theta, -y' = i\cdot\theta' \\ \therefore m = \frac{y'}{y} = -\frac{i\theta'}{o\theta} = -\frac{n\cdot i}{n\cdot o}$$

For the reflection:

$$m = -\frac{i}{o}$$

5. Image Formation of Compound Optical System



$$\frac{n'}{i_1} + \frac{n}{o_1} = \frac{n'-n}{r_1}$$

$$\frac{f_1'}{i_1} + \frac{f_1}{o_1} = 1$$

$$m_1 = -\frac{n i_1}{n' o_1}$$

$$u \approx \frac{h}{Q A_1} = \frac{h}{o_1}$$

$$\frac{n''}{i_2} + \frac{n'}{o_2} = \frac{n''-n'}{r_2}$$

$$\frac{f_2'}{i_2} + \frac{f_2}{o_2} = 1$$

$$m_2 = -\frac{n' i_2}{n'' o_2}$$

$$-u' = \frac{h}{A_1 Q'} = \frac{h}{i_1}$$

$$m = -\frac{n i}{n' o} = \frac{y}{y'}$$

$$m_3 = -\frac{n'' i_3}{n''' o_3}$$

$$\frac{f_3'}{i_3} + \frac{f_3}{o_3} = 1$$

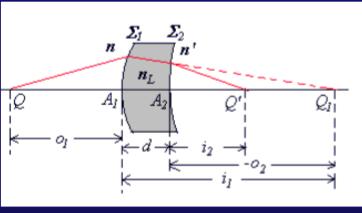
$$\therefore \frac{u}{u'} = -\frac{i_1}{o_1}$$

$$= \frac{n u}{n' u'} = \frac{y}{y'}$$

Lagrange-Helmholtz Law

$$y n u = y' n' u' = y'' n'' u'' = \dots \dots$$

Lens maker's Equation (磨鏡者公式)



$$f_1 = \frac{n}{n_L - n} r_1, \quad f_1' = \frac{n_L}{n_L - n} r_1$$

$$\frac{f'}{i} + \frac{f}{o} = 1$$

$$f_2 = \frac{n_L}{n' - n_L} r_2, \quad f_2' = \frac{n'}{n' - n_L} r_2$$

$$\frac{f_1' f_2'}{i_2} + \frac{f_1 f_2}{o_1} = f_1' + f_2$$

$$\frac{f_1' f_2'}{i} + \frac{f_1 f_2}{o} = f_1' + f_2$$

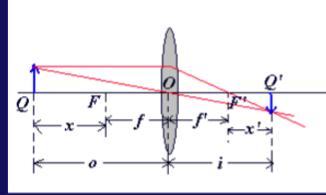
$$f' = \frac{f_1' f_2'}{f_1' + f_2} = \frac{\frac{n_L}{n_L - n} \cdot \frac{n'}{n' - n_L} r_1 r_2}{\frac{n_L}{n_L - n} r_1 + \frac{n_L}{n' - n_L} r_2} = \frac{n'}{\frac{n_L}{n_L - n} + \frac{n' - n_L}{r_1 + r_2}}$$

$$\therefore \frac{f'}{f} = \frac{n'}{n}$$

$$\text{If } n=n'=1$$

$$f = f' = \frac{1}{(n_L - 1)(\frac{1}{r_1} - \frac{1}{r_2})}$$

2. The Image Formation Formula



$$\frac{f'}{i} + \frac{f}{o} = 1$$

$$\text{If } n=n', f=f' \quad \frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

Sign Convention:

(6) If Q is at the left of F point, $x > 0$

If Q is at the right of F point, $x < 0$

(7) If Q' is at the left of F' point, $x' < 0$

If Q' is at the right of F' point, $x' > 0$

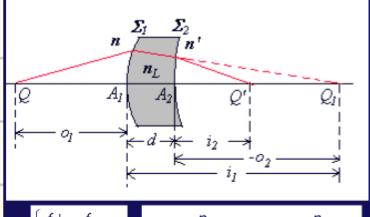
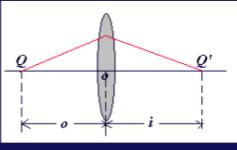
Newton's Form:

$$x x' = f^2 = f f'$$

40-7 Thin Lens (薄透鏡)

In most refraction situation there is more than one refracting surface.

1. The formula of focal length (焦距) f .



Thin lens, d is very small.

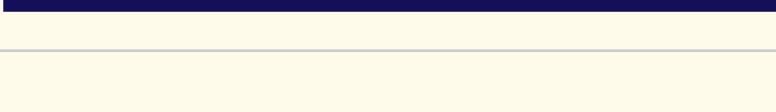
A_1, A_2 become one point.

$o = \overline{Q O} \approx o_1$

$i = \overline{O Q'} \approx i_2$

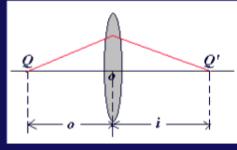
$-o_2 \approx i_1$

$$\frac{f'}{i} + \frac{f}{o} = 1$$



• If $f > 0, f' > 0$ Converging lens (凸透镜)

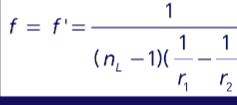
A lens that is thicker at the center than at the edges.



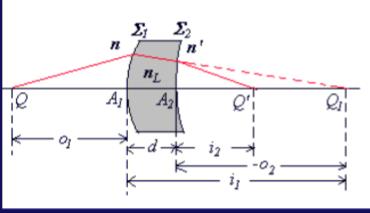
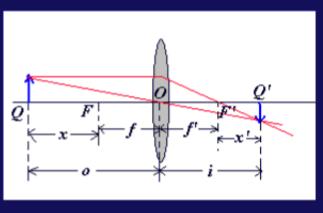
$$\frac{f'}{i} + \frac{f}{o} = 1$$

• If $f < 0, f' < 0$ Diverging lens (凹透镜)

A lens that is thicker at the edges than at the center.



Lateral Magnification (横向放大倍数)



$$o_1 = o$$

$$m_1 = -\frac{n i_1}{n_L o_1}, \quad m_2 = -\frac{n_L i_2}{n' o_2}$$

$$-o_2 = i_1$$

$$m = m_1 m_2 = \frac{n i_1}{n_L o_1} \cdot \frac{n_L i_2}{n' o_2} = \frac{n i_1}{n_L o_1} \cdot \frac{n_L i}{n' (-i_1)} = -\frac{n i}{n' o} = -\frac{f}{f' o}$$

$$i_2 = i$$

$$m = -\frac{f}{x} = -\frac{x'}{f'}$$

For example:

$$\text{Diopter, D (屈光度)} \quad P = \frac{1}{f(m)}$$

$$f = -50\text{cm} = -0.5\text{m}, \quad P = \frac{1}{-0.5} = -2.00\text{D}$$

200度