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“continuous —charge distributions
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i Thin charged rods : A linear charge density dq= Adx A= T
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Example 1: spheres {A) ’ &15 gﬁﬁiﬂ- 4 ‘%) ‘%"ﬁ-{ﬂ%‘g
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For the more general case,[§is not uniform.

A test charge qo(>0) r>o00 \[b=0 . 0-Vp=-Ja EO{E D Vo= J,q dL

The electric potential due to point charge

- For a point charge

! -
Va=Vs = 72, (- ;) VL)




Example 1: Elecme Dlpole Example 2: (Pgy4 Problem 28-9)
Electric quadrupole (E3PH{BiRIE)

The potential is much easier to

calculate than the field since it is : Calculate V(r) for the points on the
an algebraic sum of 2 scalar = | © @ 5 @ quadrupole.
terms. P

Electric quadrupole moment (58 FA{B4R1E)

Example 3 Calculate the electric potential The electric potential energy ; . F_.xample_s:
energy and potential of a charged shell. Nt Q)J @%‘LL ER plasui;l:rl;:g:,:;s SR EEen
ﬁ"ﬁ T}\:]%F, .
._ dg =2nw-dw-o
From Gauss’ Law UL ‘li 3‘3 a1 g R. 1&e 4 dE el

4:55L‘\-"zj +er’
The potential
Estimate the radius R of an electron

rp > R, V(P)= [ Eedl =
i 4m:nr,‘

o <R, V(P)= [ Eedl +["Eedl .
g i
dnggR - 4ns

Lecture 5, ACT 4
Two charged balls are each at the same potential V. Ball 2 is
twice as large as ball 1.

Charge on Conductors?

1 ributed on th

Ball 2
As V is increased, which ball will induce breakdown first?
b) Ball 2 S, Tin
(b) Bal (c) Same Time » %
-&
=L smaner higher E  close a a .
15
High Voltage T:.'nm.mls must be hig!
Calculate the potential V(') { | N
1 -y - ,‘_ e | 3 —
at the point shown (r<a) (.rzc, Ve= jr £.dl = 1¢, (v oﬂ) 4M%,r

(3

g - oo r o ¥
@. ber<c, Ve=f E-dl :J: gdl*L gdl = [TEdL = 4ng,C

T = c2 - w2 »_ @ Q .
@). a<r<h, \jrzfrE-dl:j:’E-dL-f-Jon[L +j&5-dtv TE (%J:) 4-——,“!% - 4’__:?@.. [%V(F_%)]
cond . -
). rea V= Edl= JEH‘J’L *L Edl+f, & +j Edl= % (z-1)+ '% %‘fL E-dl

solid sphere y e
with total : 3 q I
charge Q i r
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. Equjpotmtials (%ﬁlﬁ) : The locus of points with the same potential.

Example: for a paint charge, the equipotentials are spheres centered on

the charge. : Electric Dipole Equipotentials

«First, let’s take a look at the equipotenti

+ Claim
The surface of a conductor is ahvays an equipotential

; surface (in fact, the entire conductor is an equipotential).
Therefore, ; i /

?

We can conclude then, that - « 4] is zero. . X X 3
If surface were not equipotential, there would be an electric
field component parallel to the surface and the charges

If the dot product of the field vector and the displacement vector is zero, 3 would move!!

then these two vectors are perpendicular, or the electric field is always

perpendicular to the equipotential surface.




Preflight 6:

Chapter 28, ACT 1

An uncharged spherical conductor has
iEY  weirdly shaped cavity carved out of it.
Inside the cavity is a charge -g.

el \@% lﬂ")] ‘73‘;4;?{@ s %}ﬁl X UA: VE How much charge is on the cavity wall?

(a) Less than< q Exactly q (c) More than q

i3:) How is the charge distributed on the cavity wall?
happens to the char (a) Uniformly

or B ? i More charge closer to—¢
(c) Less charge closer to -q

[l How is the charge distributed on the outside of the sphere?
‘iﬁ’ Uniformly
(b) More charge near the cavity
(c) Less charge near the cavity

Corona Discharged (R¥RH{EB)

- How is the charge distributed on a
non-spherical conductor?? Claim large:
charge density at smallest radius of curvature.

+ 2 spheres, connected by a wire,
- Both at same potential 1. Graphically (Bfzi)

From equipotential surfaces
h‘.w_r lines of forces.

Describe the behavior of F

dW =-q,dv dW= F-dl=4.E -dT = LE dl cosp

rate of change of the potential with position in
d \’ ‘3 dv any mponent of E in this direction.

o =qedV =g Edlasg > Ecosp=~ g

ata In the direction
e potential Corresponds to the

- We can obtain the electric field E from the : g : , P e 3
radient (ﬁﬁ) at that point. direction of

potential V by inverting our previous relation
between E and V:

T+ xdx
.
Vv
- Expressed as a ves

- Cartesian coordinates:

+ Spherical coordinates:

Example 1 Electric Dipole | 244 cosh
SVe0= e o
The potential is much easier to V /9)= Zre ;
calculate than the field since itis v 2 -2050
an algebraic sum of 2 scalar 4 5 E\“ = - %F == ?%I D ("_-_-rs )

xpressing this as a A :
vector: A o ' 2 | v _ Zt_&j =5ing
+ Something 2 & E9= T a8~ amng, rs )
- Rewrite this for special case 8

2acosd

Now we can use this potential to calculate the E
field of a dipole (after a picture)

(remember how messy the direct calculation was?)
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28-7 The Electrostatic Accelerator

(PESI ’ ﬁmnuﬁ%)

Nuclear reactions: How to get large velocity Jy
One method is based on an electrostatic technique.

W g

POVNC VRV SV

o particles

vis very large

Nuclear:

K=

Summary

A Capacitor is an object with two spatially separated conducting
surfaces

Example1: Parallel Plate Capacitor g e

(FiTiRBEN)

» Calculate the capacitance. We
assume +q, -g charge on each

ion of the capacitance of such an object is:

FHAREERERE - ¢

plate with potential difference
prs c_1 - _3
R SE=T A AV=V,-\es= Ai.d
I
9. 1 _eA
- Needq: C=av*w-w-""d
+ Need 4V: from def'n:
Capacitance (EBE) - Use Gauss’ Law to find E
Spherical
C =47e,
b
Example 2: Cylindrical Capacitor a a
(m%ﬂ) a(fqbﬁ%ﬂE‘ EZT{_rL:E' > E=W
Calculate the capacitance: a 2, L
2 s b2 > b Q 23 b ) - _2n
Assume +Q, -@Q on surface of ' = - Jdl = dl z[[—=—dr = ln . - -y
cylinders with potential SN ‘L E-d “L E dl’ ’r" e, Ly 2nEL [“) E C aVv In (a)

difference V.

Example 3 A Spherical Capacitor

(BRTE B 38) Yo wbd AV= g & 4 (oo Sénea > —4E4eL BET

Example:

What is the capacitance of the Earth, viewed as an
isolated conducting sphere of radius R=6370km?

C=47g,R=4-3.14- (8.85- 107" F /m)- 6.37-10°m
~7.1-10*F =710 pF
Capacitors in Series (EREX)

+HQ -Q

Combinations of Capacitors

L

a;quEZibo ai{}%b

Find “equivalent” capacitance C in the sense that no

+ Find “equivalent (EF8)” capacitance C in the
sense that no measurement at a, b could
distinguish the above two situations.

measurement at a, b could distinguish the above two situations.

CSL C|+CL)
it +Es

The charge on €1 must be the same as the charge on
C- since applying a potential difference across ab
cannot produce a net charge on the inner plates of
Ciand C;

- assume there is no net charge on node between C; and C;

- Aha! The voltage across the two is the same....

Parallel Combination:

Equivalent Capacitor:



Appendix: Another example b__Qdr J d @ -G b d
3 Vad:Ja 210+ ) et dr = ZREnL[Iﬂ[_a)'i*]n(c)]
. Sulppgse \zvigvef 4 1:dcg!'|celz’1‘l:r'|cdl
Sdehagesea 640G R
LT Vel a3+ %)

*  Question: What is the
capacitance between a and d?

Note: E-field between band ¢
is zero! WHY??
» Acylinderofradiusri:b<rn<c
encloses zero charge!

30-2 Energy storage in electric field Where is the Energy Stored?

Y X = 2 - 0 0 O
+ How much energy is stored in a charged capacitor? ,‘é, 1 %jﬁ% )\;: ﬁ@g?}f@é’] ALe Claim: energy is stored in the electric field itself.
- Calculate the work provided (usually by a battery) to charge a Thlnk. of the energy needed to charge the l::apaCItor
capacitor to +/- @ as being the energy needed to create the field.

" i To calculate the energy density in the field, first consider the
Calculate incremental work dW needed to add charge dq to constant field generated by a parallel plate capacitor, where

capacitor at voltage V {there is a trick here!): = en -

L\

W=y= Lev?

s 2 C 2 / ;his is the erflell;gy
zCV ensity, u, of the

|
3 U lectric field...
PAS=4, - —_ = electric fiel
ALFAE U= g = A 4
Age
N A X
- Ad

* In terms of the voltage V:

Energy Density Chapter 30, ACT 2
Claim: the expression for the energy density of the
electrostatic field = Consider two cylindrical capacitors, each of
: length L.
is general and is not restricted to the special case of the — €, has inner radius « and outer radius b.
constant field in a parallel plate capacitor. = C, has inner radius 2a and outer radius 2b.
* Example (and another exercise for the student!) If both capacitors are given the same amount of

i i ]
— Consider E-field between surfaces of cylindrical charge, what is the relation between U,, the energy
capacitor: stored in C,, and U,, the energy stored in C,?

'

LI -

— Calculate the energy in the field of the capacitor by (Hint: what is the relationship between C, and C,?) U' U’-
integrating the above energy density over the volume of

the space between cylinde _ (a) U, < U, () U,>U,

U :é:,,_ﬂl‘)n‘v :;.r‘J j(zj
‘ Problem 30-7 (page 687). An isolated conducting sphere whose
- Cumpalre this va_lue.with what you expect from the radius R is 6.85cm carries a charge g=1.25nC. (a) How much energy
genera expression: is stored in the electric field of this charged conductor? (b) What is
the energy density ( HERZEEE ) at the surface of the sphere? (c)
What is the radius R, of the imaginary spherical surface such that

Y L2ardr =

one-half of the stored potential energy lies within it?
R=6.85cm, q=1.25nC
(@) U=?
(b) u=? (at the surface of the sphere)
(¢) R,=? AtR<R, U=12U

C =4me,R

= _
2C  8m¢R

=1.03x10"" J =103nJ

(FB7TE, FEIZREv4EEE)

1. Capacitor with dielectrics

u =,l?.‘f‘-"' =l,s-‘ q - =—{; — =25.4nJ fcm’
2 2 167, R 321, R

D U(r <R,) =U(r =R,)

f” %{?EJEidv = J: %.-"”E"’dv

* Empirical observation:

Inserting a non-conducting material ( #&45{% ) between the plates of
a capacitor changes the VALUE of the capacitance.

Definition:

0 1 ! 1
Jf‘ SPR T 4aridr =£ —£, 7? daridr
2 T 167°

The dielectric constant ( 7T %] ) of a material is the ratio of the
capacitance when filled with the dielectric to that without it:

2" 167°6,r e,
r.’ . ri

— K, values are always > 1 (e.g., glass = 5.6; water = 78) 11 _1

— They INCREASE the capacitance of a capacitor (generally R R, R,

good, since it is hard to make “big” capacitors)

— They permit more energy to be stored on a given capacitor
than otherwise with vacuum (i.e., air)

R, =2R =13.7cm




Parallel Plate Example | (Q is constant) Parallel Plate Example Il (v is constant)

* Deposit a charge Q on parallel plates Losnsssnssannnsf » A charge Q on parallel plates filled
filled with vacuum (air)—capacitance C,. Vo Eo with vacuum (air) and with the
battery connected —capacitance C,.

* The potential difference is V, = QI C,. * Thecharge Q = C,V.

* Now insert material with dielectric . I .
constant k. ( FTEEEH). * Now insert material with dielectric
) constant x, .

— Charge Q remains constant
b — The voltage remains constant

— Capacitance increases C = k,C, i i
’ — Capacitance increases C = x,C,

— Charge increases from Q to:

Q' =r.CV

How to understand the increase of C: (Macroscopic 7= XRIEf# )

* The presence of conductor in a capacitor

* For a parallel-plate capacitor: The redistribution of charge ina C

* For a cylindrical capacitor:

* For a spherical capacitor:
Polarization ( 1Rt )

V =Ed =(E, - E')d <E,d

c=9 - a4
induced charge Ed (EU = E')d

0

Yt bR (FARFFEAR - padzo b v cch

RAFBATR P dto o
The non-polar dielectrics ( Ttk 53 FHIT Polar dielectrics ( &5 FE7T
% ): in an electric field

in an electric field

C o
-
- - .

Induced electric dipole moment ( B4 EB{BRIE ) Alignment polarization ( BYFIR{)

* Notes: In high frequency field, Electric displacement

Electric displa t polarizatio 1F%
ectric displacement polarization ( AU ) polarization ( EFAHEARIL ) plays an important role.

* Polarization (#4ZZEXEP)

* Definition
In the volume of AV

. - SP. = s
ZF#O P= AV Ps- P-E)QE@@;P’?‘J ]

*




* Relationship between Pand o’

dq'=Pe* dA =Pcosé -dA
For uniform dielectrics -

dq' -

The induced charge distributes only

on the surface of dielectrics. ' o'=—-=Pcosd =P*n =P,
For displacement polarization ( {If8#& ) dA

Consider the positive induced charge through area dA due to
polarization.

dN =ndV =nldAcos &
dq' =qdN =nqldAcos
=PdAcost/

=PedA

gipran=Sq-3q

outr in

Example 1

A spherical dielectrics, uniform polarization P

o0,’=Pcos@

Calculating the depolarization field E’ (iB#%{£1% ) at center.

o,'=P, =Pcosd
dE'= dg'  _ o,'dA _ PcostdA
4ze,R* Ane R dag R’
dA =Rd# ‘Rsin dg

=R’sintdtdg

dE'=

cosdsin tdéd g
e,

c . o dE', =dE'cos(w - #) =- dE'cos#
Depolarization field E’ : (=9

P )
=- cos” @sin kg
4,

At some place, [ in the same direction.
. . . . P 2 P P

At another place, in the o site direction E' = = s’ fsintdd [ do =-
I E',E, I ; CJSE'E e fcoa sin f 7=

+0s  Cp

. Faalle] plote |I

5. Polarization law of dielectrics ( B87TBRIRALIT
#2)

6e =Peoso = P

8

+ + + + ¥ +
m
(1]
9\\9

* For some crystal materials

(anisotropic, 81 510, S kKSR

P |

[ ritnitn || E,

' ' B =| Xk i || Gk
_:> = = e

" Ue E E B\ Mt || 5GF,

[ SUTLNE SN PR S8

- P(E) function

For different materials, jd¢8] different and complicated, B =xuoEs + 8o + b,
which is determined by an experiment result.

P, =Xt B b Ko 4 2,0,

* For general isotropic materials ( ErE1 )

X.: Polarization coefficient ( &L )

=1+ %,




6. Electric Displacement Vector D ( ®{if$%
&)

and Gauss’ Law with Dielectrics.

In dielectrics:

E,—» P— o',— E'= E =E,+E'

very complicated

Electric Displacement Vector D
e {pEedd = Wt q'
e fpEec PACRZY
<ﬂ> Pedd= z q'
Eedi=S g, —¢bPedd
ﬁ)f LY %q <]ch LY

#(SUE"+ P)edd = ):fln

in

#D-dfi - Zq[,
In

Induce a new physical quantity:

m Electric Displacement Vector ( B{IiSXE )
Or Electric Induction Vector ( BENXE )

Gauss Law in the dielectrics

Electric Displacement Vector (EB{i 8% 8)

Cf)P. dA=2q,
D,AA+ D,AA =0,,AA
E,=0,D, =k,&,E, =0,.". D, =0} conductor
D =D, =0,, =¢,E,

D _toky _Ey

K,

Dielectric constant(frEREE)

Polarization Coefficient (R {£3E)

-Gep +Cag

D =¢E+P =k,6,E

Example 2
[f[pedA=2q,

dzr’D =q,

Kj‘E'dl =0, but (jD'C” el why?
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i, i=Jlad dR = Jfajastda
RREE ST
o %ﬁﬁdﬁ] E #A 3‘- a'R =- :t_q ,’//,j:’\

;:7-\\: A . &
CA T leRbidd: dildico 5 jehcien saBRR .
s :

(D rAate M)

3. Ohm Law, Resistance, & Resistivity
(BReGTERE, HBFH, =BfE)

Resistivity, & conductivity

(EBFEEEHIER S )

L [ resistivity
R=p— 1 .
A o =—, conductivity
‘(7

» Ohm Law

Metal, liquid containing acid, alkali,

2 12
J=¢E

4

J

-
1E

salt...., linear devices (SRioHF) EE.EﬂpHHF.FM
Evacuated tube (H8F#), transistor (PN&)....., Hm*ﬂmﬁlﬁ
nonlinear devices (i) |
. I Cu, AHESH, R
Conductance (@5) Unit:E8FE: BXM(0). HS: FiIFS); , WESEHRRL
AR EAMATR
E:S . EAl=AV= jas-AR=jAs P
dl o dr BLLT K e B S = eal >
A o 2mr?
P NP
=i i 27 r 27 a

BERBMATR: AP=(A)2R=(05) (p4h)=piav = gEAV=YEAy  BMBFE - w= 5y =IE’



KUY
* The electrostatic force:

electric charge —E —electric charge
The magnetic force:

= The similarity between a sol
Ampere suggested : "molecular current (FFE8¥E)"

Electric Force: Coulomb’s Law Ampere’s Law (cont.)
« In general, i>d33 is not on the same plane of §1d3;

gs, =0,
Lxsind,

L — I plane, dF,, =0

The current element ids (E#EFE) of an
arbitrary distribution

dE.= kMﬁ) K= 4T ﬂ" = le N/A Jo=4mx 19 N/AT (3755

dFll sz;

dF.2dR,  (4EE=2A44F0)

2
€. |
2 g A i ds)
= Sxlidiixle). o~ S _ihds dn
dﬁ,,zzj-"-h“T}'s‘”* deLte o dF.= o
£d5, ‘ﬂ%l + bds-
1 = | sy
daFj; .M, 1.ds‘x(1;ds,>tﬁ. ~ Mo _jindads /
dF. i SN | ik 1
eq2
- }h hds.*(hds:"rn - ~
dF 4‘“— ru_ dSI //rl?. dy dF"-:o
£, 1
________ t‘ztﬁ“z P R, T
7y = )l-a Lo 2 (i) ko) ~ Mo _ihdsids:
b dF.= 7= o g Lt RS S
21

= S .}“ IIJSL‘(ildslxﬂa |.€|‘5: X rlr-
rﬁ dh" ni > dF:.“ 47t 'Zd §L: n
é 'rdsl"ﬁl , “'_.d—u - ‘
ELL B' (M . dFR = idsxB) Unit : Tesla (T) s AT=IN/m.A, IT= 10" Gauss

¥z

* Biot - Savart (%ﬁ*ﬁi@]ﬂ)ﬁﬁ_ A long straight line

(o
(=zinp

D EXL: 0,20, wsh=]

- -, > @ .Jd.‘(a
1) =1d8]  dE=77 5 4B,z dB-wxd

P4t B= J:.db Jo oot dr

o = M idéx Tt Az %92 Mo idx 5-ng
N\ - dB = = 1A dB= 7%
W 4B il
1 -g .dsxr fdx|
F
X

x=-Top > dx=

fde
O oy Sinl S Sin'

BJ I T fsiee 4nr

91_:71 ’ cos .=~

o ids .
dl';:‘ﬁ"_r_‘s'"ﬂ

n
Bx‘édBn=§dEasd- = B= 4;;? Lng d\ WScde = ﬂr‘ Bin'd cosdk - 2m R

e Mo
AV ==

iR

Mo
‘At _the center of the leop (r=0) B= 3%

_ MR
‘>R ; B=S

lp=rsinlm-8)=rsing
r.dg

sin'f

[cosa. st,)

#Oi
B= Z=r,
= ro/sind

Bz !)



+ The magnetic dipole moment p(ﬁﬂﬂ@ of Example 3: sample problem 33-5, p.757
the current loop. ; .
. . - fdi B My dx
P iTRY A e

dB, = dB-cost

3 3
27, 27,

_ R
cosf)
e

_J #Uicosi fldx A flat strip of copper negligible

27 Ra thickness carrying a current i. If the point is far from the strip, & = tgre = a/2R, 8 ;[";?
- B [costog : i
= s cos X If the point is very close to the strip, R = 0, o =7/2, 8=—
. 2

Solenoid GEH%)

Example 4: Bohr model of the hydrogen atom

ap=0.529 A =5.29x10 -1
m

r=6.63 x 1015 Hz

a) The magnetic field:
j=er=1.60-10"- 663-10% =1.63- 107" A

Length L,

Radius R,

The number of turns per unit length:n
The number of turns in di;  ndl

L=c.B =0, B=n

B= 3 ueni () = o0

7 2
f_4m-107-1.06- 107 My Rindi
B e =1eT ®-5 [# 40T . R
2R 2-5.29- 10 ] i gﬁdﬂ
(N3 ‘¢ [ sin
(a) The equivalent magnetic dipole moment: 5 7&{ Rindi _ sinfp
2 e e

[Rivtxent|"
R
sin 3

(——! Z
sin B x+Li2

cos 3 =

Uy =iA=1.63-107- 7- (5.29-107"")?
=0.923- 107 A-m’
Bohr Magnon (B/REEF)

I — Y PIYYEE
(7\|‘R‘+(x—|‘3‘— VRO L2

4 Y
; “nif " sin pag L2

cos 3, =

X 7 =
—— =g = ol = AR HIx=-L/2)
R si

—lzyrmtmsﬁ —cosfA.)

Example 5. a solenoid with many layers
wires p.#@kEsEi
The total number of turns: N

Ni 2/

dB=—p——
27" 2R, - R) P+

dr

I ¥
B:.Uf;.p’IJVR P
N/
Ry +: R+

=t jl1In s
R, +\;'R" +I°

Now, Cu wire: 2T
Superconductor: 20T

9 58S
1. The Gauss’Law of the magnetic field

ShOW: ﬁ B’ s d;l i From BitSaart Law

= :——1 In the loop

- Magnetic flux (BiE=)

®, =[[Bedi=[[Beosti

dA = ‘d/l‘ L‘U\S“ =d4, ‘L‘U%H‘l. 8 > T , cosB <0
2

iy =[edd, cos 8| = dd, [cos &, 8, < % cosd, >0

» kKT

dd, cos8,

_ Wy idssin@
4 r

B _p_],i(!'\'ﬁingd"lr

.

do,, = Ho m’s.\:!nS’M\ cosé,
S A< . '

w, idssing

dA,
dr 5

No magnetic monopoles




2. The Ampere’s LOOf Law of a magnetic field 9;?\ RRETHE J#\.;ﬁ fh

$B AU = Jo3i > £ .

(EiIA=ISHIEEE)
i Notes (Cont.)
Bedl = U i
§ Ufn|z()0p
$, Pdx+ Qdy +Rd2 -
2 the total current cenclosed” sndz dedx dods Due to [ in Biot-Savart Law,
by the loop. =JJ 4 P There is only a Jl, in Ampere’s Loop Law
412307 [

* The i’s sign: obey right-hand rule “+”
not obey right-hand rule “-”

ﬂgéocﬁ.:pﬂ(ﬂlfiz) = 2 21
(2) The B at points on the loop and within loop certainly [ & R .
depends on the current i;; however the integral of
does not depends on the current iz that do
not penetrate the surface by the loop.

Shokes AR

wsd  cosp cost
2

€q .

Example 1: Infinite long wire, = e
Radius of wire R; 535 dU =B2anr
i : uniform distribution Mot

B= zar

- Outside the wire:
(r>R)

Example 3 B Field of a Solenoid

A constant magnetic field can (in principle) be produced by
an ¥ sheet of current. In practice, however, a constant
magnetic field is often produced by a solenoid.

Example 2: B Field of - Current Sheet A solenoid is defined by a current i flowing

it f - e
* Consider an eo sheet of current described by n through a wne_that L wrap_ped n turns per urt
wires/length each carrying current i into the - leng;h on a cylinder of radius a and length L.

screen as shown. Calculate the B field.

- What is the direction of the field?
; netry P vertical direction

If a << L, the B field is to first order contained within the

solenoid, in the axial direction, and of constant

ALt i magnitude. In this limit, we can calculate the field using
S,id;lw? € USINE AINpere's law 10r a square o. Ampere's LaW.

p. <
X
VX
X
X
X
X

B Field of an« Solenoid
vk

P Rt g - To calculate the B field of the o0 solenoid using Ampere's Law, we
need to justify the claim that the B field is 0 outside the solenoid.

Example 4 Toroid (¢24:35)

Toroid defined by N total turns with - LXX : + To do this, view the » solenoid from the S o o

current i. side as 29 current sheets. _ j ' RS
B=0 outside toroid! (Consider 5 / 2 e

integrating B on circle outside toroid) , / ) - The fields are in the same direction in'the region w. —
& & ) between the sheets (inside the solenoid) and
cancel outside the sheets (outside the solenoid).

To find B inside, consider circle of radius r, > : th of sid .
centered at the center of the toroid. Draw square path of side w:

J;éodf:B.QW:NONf ff)BOdl = Bw =y nwi
. p . Amp
— B — ﬂoni Note: B o Lgng[h m




Example 32-5: Page 738

F =F,=ilB
dF =ids x B = iBds = iBRd6
dF,, = dF cos6, Fy, = [ dF, =0
dF, =dFsing@

oy o [ iBRAOsin 9 = :'BRJ" sin@do = 2iBR
2 L 0 o

The resultant force on the entire wire:

F=F+F+F =ILB+iLB+i2RB=iB(2L+2R)

3. Torque (77#E) exerted on a current loop in
an uniform magnetic field

- For convenience sake, the unit normal vector n of current loop,

i

- Arectangular loop of wire ( ﬁEﬁ’?ﬁl)

T=F, ~£-51HE+E“-I—J-51118
iy 2 2

=iaB -E‘sinﬁ’ +J'HB‘E- sind
2 2

=iBAsing Bring ntinto -
2 : aignment with B
F=id(iixB)=[x8

If we define

7 =iA(A- B)

U :-jf-do' :J,u,Bsin()d()

= uBcosl) = [ie B

Potential Energy of Dipole
HRRIEERIARRY S RE

2. Two parallel conductors

The magnetic field at the second wire
due to the first wire

= Haly
2rid
dﬁl: = i,ds, % ‘él

dF,, = iyds, B, = 202 gg,
L 2nd

The magnetic force per unit length: odie _ My
The definition of the unit of current: S ds . O ﬁiﬁ

,UUI Zﬁfd'
T 2nd’ 2><1()’

—lm,f—ZXIO "Nim,i=14

-For arbitrary shape loop ((EERZIRZEE)
dF, =ids,Bsin§,

dF, =ids,Bsing,

ds sinf, =ds,sing, =dh
dF, = dF, =iBdh

dr =dF,-x, +dF, -x,

=iBdh(x, + x,)
= iBdA
r= jdl, = [fBa'A =iBA




MRI (Magnetic Resonance Imaging) =
NMR (Nuclear Magnetic Resonance)

A single proton (like the one in PROTON SPIN

every hydrogen atom) has a
charge (+lel) and an intrinsic
angular momentum (“spin”). If we
(naively) imagine the charge
circulating in a loop < magnetic
dipole moment .

¥ 231

will be tor

In an external B-field:

- Classically: ther s unlesgi, is

ong B or inst it

Aligned:y, = -uB
Energy Difference: Au

Anti-aligned:y, = ug

=U,-U,=2uB

B4 T w

1. Lorentz Force

(B-¢2ih)
F=quXxB
F =qvBsin 0

(1)F|_the plane of Vand B

(2)F | v, it can not change the
magnitude of v, only its direction.

Equivalently, the force is always at
right angles to the displacement
of the particle and can do no
work on it

(1) VJ-TB, in uniform magnetic field

Constant-Speed circle
motion

T and f are independent of v
and R

At Equilibrium:

(j-bd)-B B

Charge drift speed (EEF8EE): V
The charge number per unit velume:
dg gndidA df

f= = n- = gnv|
/ ot - dA dtdA dt !

n
small,B(kG)
In metal:

n large, B(T)

The density of charge
carriersn
The Hall Resistance Ry

and MAGNETIC MOMENT

along B

MRI / NMR Example

Aligned:y =—uB
Energy Difference: AU =u, -U, =2uB

Anti-aligned:y , = 8

Wproton = 1.36x10726 A nf¥ = 1 Tesla (=10* Gauss)
_ (note: thi a big field!)
AU =2uB=27x107"* 0

In QM, you will learn that photon
energy = frequency . Planck’s constant

h = 6.6x1034 Js

AU 2.7x107%)

YV =—

=~ =41MHz
h  6.6x10%Js

Microscopic Description (REEHE)

Macroscopic Description (ETEHR)

The electron alignment moving speed: T
The electron number per unit volume: n

InAt time;
Mg =end-udt

J—ﬂ—n»‘lue
At
GLEsin(l=1,f =eu
F.=nA-As- f, = nA-As-euB
= BlevuAm As
= BiAs

The total force:

(2) In general case



IRF VSR A
B 7 . CI’DKHE‘AH

* In a steady magnetic field, moving conductor: metional emf
* Conductor in steady, Changing magnetic field: induced emf

1. Motional emf (s14EEREDEE):

Lorentz force results in a motional emf.

f=—elvx B)

Electron moves in the direction of DCBA

Non electrostatic force:

(dERpeRTT )

rator is a device for
converting mechanical work (or
other) into electrical work in the
load.

(DB=1§- A= BAcosQ = BAcoswit

db, d cosmt
dt dt

Induced electric field (BRHBE) |5 —9

induced

* The work W done on the charge by the induced electric field
E in circular is qge

* Faraday’'s Law:

= For any point in space
E. = E!P.‘l + E‘\'.‘l(f
fE o = f(E,+E ) d =04 (-t =
. dt dt

WA (e h AR Ewh)
U f“}ﬂ:)ao r;ﬂl\ffh Uy

34-5. Induction & Relative Motion

In the Reference S fixed with B:

Motional emf:
V+V,, FH =N+ F;
= N(vdr)

sin 8(vdr)

= (gBv)(v,dt)
= gBvdl

v = JqB\-fd! =gBvD
./q=BDv

Application of Induction

E-M Cannon(E3EH)

- Connect solenoid to a source of
alternating voltage.

+ The flux through the area L to axis of
solenoid therefore changes in time.

- A conducting ring placed on top of the

solenoid will have a current induced in it
opposing this change.

- There will then be a force on the ring
since it contains a current which is
cireulating in the presence of a magnetic
field.

top view

Example: Page 781, Sample problem 34-4

I Solution
de = (VX B) @ dF = —Buvdr,

- Motional emf exists only in the moving conductor
= For any cases, {any shape, closed, non-closed)

* Lorentz force can’t do work to electron! Why we
speak that Lorentz force results in a motional
emf? Due to: the velocity of electron

F=—eli, +V)X8

“ ; 1 ,
& :—J‘H Bvdr =—IH Bwrdr = ——BwR"
L] n 2

A copper rod of length

R, angular frequency «,
in an uniform magnetic
field B
What is the direction of induced emf?

f——evXB Do positive work
|

Do negative work

2. Induced emf B4R
(Vortex electric field, RAEERE)

ime
~TTTT Vs i ;
~L J ~L J
A magnetic field, increasing in time, passes through the blue loop
An electric field is generated “ringing” the increasing magnetic field

Circulating E-field will drive currents, just like a voltage difference

Note: The loop d
acuurn! When

ik AR L

HE Stokes 43 R

$Edi = JJ(WE

—) aB

VXE =~ 3¢

V.=—Fdl =—F;cos@dl =—qVBW/V)dl =—
W, =-qvBD =-W,

qgvBdl

Wi+ W;=0, the work by force F; on
the charge carrier is zero. It does
not apply energy, but play the role
of transforming energy.

Motional emfis intimately
connected with the sideways
deflecting force by a magnetic
field.



The Reference S’ fixed with the loop:
&'=[Edl=ED
&' '=BDv
E'=vxB
Force is of purely electric origin,

S:JE’“CUA

In general in S”:

1. Mutual Inductance (B )

From Faraday's Law
5

By il& Un

Mutual inductance

ijchange s;induced emf &

izchange s;induced emf g
Mutual inductance emf g o
W (e N,AB) e N,D

The number of flux linkage (BB in S; due to Sq: 2
V., = M,

The number of flux linkage (BBEEEM) in S; due to 5;:  RLCRINEE-NERIRGM
From Faraday’s Law Wy, =M.

i
+ (i, change)

N (i, change)

. i change, B change
5_f \)( ; — induced emf a

JJ\,UJJV

’\““(\’\’\B
R R R EE B R

A JJJU s

3. How to calculate the self-inductance(BRRE)
Similar to calculating the capacitance of a capacitor

Calculate L:

* Supposei in a particular inductor
* Determine B

* The number of flux linkages:

v OND,

i

Notes
» Mj,, Mg, are called inductance constant (ERERE]) .
* Mp=Mz=M
* Unitof M: Hery (%F)) H 1H=1Wb/1A, mH, pH

. Example1 I=1m, A=10cm" =10 °m’

di,
N, =1000, N,=20, —'=10A/s
at

Calculate Mutual inductance,
induced emf & in Sz

, -25.107%- 10V
. 1000 20- 107
=4m 10 ———— WMl 250 uv

25- 107" H = 25uH

Self-Inductance L

The magnetic field produced by the
current in the loop shown is
proportional to that current: g « ;

The flux, therefore, is also
proportional to the current
We define this constant of

proportionality between flux and [t
current to be the inductance, L.

Combining with Faraday’s
Law gives the emf
induced by a changing
current:

Example 2, The self-inductance of a
solenoid

3% Vid) ) Calculate L for a section of length /
lﬂ))“””}}%m of a long solenoid of
S cross-sectional area A

Suppose i in the solenoid.

The number of flux linkages: s = NO, = niBA = 1, n*ilA

L =£ = p.nnjl‘A = ,u,ﬂn?‘./
!
The self-inductance per unit volume:

The self-inductance per unit length:




Example 3 The inductance of a Toroid

of rectangular ({5 IREEF)

N: the total number of
turns of toroid

L depends only on the

geometrical factors.

g = bolN
27r
0, =[[BedA= L”%hdr

 MgiNh J—bdr ~ HyiNh In b
27 °r 27 a

—. BREHY (1) =. EREH (v)
1. B 1. EX

S EZEPHERALETHN, EFENE
HHGEFEES%E, NEBSHRBET
B (XMRIEBAR) . BRRHL
iR ZE B SRREA, FEERBHE

N MEE, N
4. The relationship between

mutual inductance and self inductance

* No flux leakage M =

L=L,+L,+2M
=L +L,+2.JLL,

» Opposite in series

« Direct in series

L=L+L,—2M

=L, +L,—2LL,

1. Atomic and nuclear magnetism ([RFHIRFEZwiE)

The magnetic Froperties is determined b_y}the magnetic
moment of the valance electrons ({fE8-FRIEE).

The magnetic dipole
moment:

e _
S =— ., =——1
H 2m H 2m The angular momentum:

The magnetic dipole moment in vector : | = mvr

L: The total angular momentum of all electrons in atom.
.a;_‘: The total magnetic moment of all electrons in atom.
The smallest unit of yy

elt eh
fy=—=——=9.27.- 1072 J/T

Y 2m  4mm

Example: TV signals transmit
(coaxial cable)

LWANEE (S S) Z2EEFEEDBRE

i, —MEENBERENEER—MEERRE
RHEHE (EHAKWERRR) . EER
# v iR BNERE Z D#IZE SR 1Y

magnetic materia

Ke: dielectric constant

5. Inductors wit

« Capacitor with dielectrics

induced charge

» inductor with magnetic material

Km: permeability constant (BS38)
For paramagnetic or diamagnetic
material:
Kkm=1
For ferromagnetic material:
km=103-104

Magnetic Properties of materials (¥R )

-The spin magnetic dipole moment

(ERERLRE)

Elementary particles: intrinsic angular momentum (EHEfNE) S
For Example:

” 1
electron (HL17) s —;h

Deuteron ((H) s=h
Alpha (aki ) s=0

Bose T

Proton (i) x-—l‘h Fermi -f-
Neutron (*F T} 5 = iﬁ
Intrinsic magnetic dipole moment :

The total intrinsic magnetic dipole moment:

The total spin of all electrons in the atom:

The magnetic properties of material are determined by the
magnetic dipole moment of its atoms.

- Nuclear Magnetism
(EFLEE)

Nuclear (BF#%) = Protons + Neutrons
- Orbital part: Proton (BEF)
Neutron (FF)
+ Spin part: Proton (&EF)

Neutron (FF)




2 Magnetlzatmn (REALEEM) of material]l Magnetization Vector (B{4IBEIXEM)

Define magnetization Vector z i
Soft-Fe rod (§REkH) A > ] L AV

Induced current density
(R{UCERT, ROQREE)

Non-uniform magnetization (JEEI5#1L):

=(M,-M)ehz

i =(M,—M,)elz

iy =(M,—M,)elz
LR = (M, - M ))e Az

PModl =M, Dz M, Dz =ij+i i)=Y i

inl

5. A;__ ‘ i
ar e i vy
f}E; wdi=-3 ¢ / Am =i"0A = ' fdphz

Induced Current

CGREGR)

V=AL  j.L=2%
B .
Zfhm=Z tmA
= ijLA ;Ej""v
SN X FEP T L AP

l AR~ "I:!t‘x x I

Ampere’s Loop Law with magnetic material
The magnetic induction strength in the magnetic medium (BT R)

3. The magnetization Law for material
—Relationship between AT,B—ancl H
For dielectrics:  For magnetic materials:
= el P - T3l ‘1. susceptibility (Bft3E)
=y z(f:. +i) :.-‘fn;‘n ! + Unit of H: Os(BHi5), A/m ¥ o T sk A magnenzanou cnefﬁrlent
1A/m = 411x1030s

Microscopic Explanation (WRfEEE)
1. For paramagnetic materials (IFig&#1%}):

+ For magnetic materials:
Paramagnetic (Jfif#) materials:

Diamagnetic (fi#) materials:
Ferromagnetic (¥i) materials: B

3. Ferromagnetic materials (BkEEFED Ferromagnets, cont.
+ strong interaction hetween neighboring atomic - Even in the absence of an applied B, the dipoles tend to
Hn dipole moments 53R FHERFEERETER strongly align over small patches - “domains (H§)”.
- Fe, Co, Ni at room temperature Applying an external field, the domains a]lgn o pruduce a
- Gd, Dy at low temperatures fenc i Al i
- Cr0, the magnetic powder on the tape.
T |, Ferromagnetic —paramagnetic
the interaction | - “Soft” ferromagnets ¥REkfi {5 :
T M o) i - The domains rerandomize when the field isremoved
A - = H T-0 B . “Hard" terl‘omagnets 1323733
For Ferromagnets, =0 l"‘.‘ ren when the field is removed
. 5 I)nmﬂm: may he ahvnpd in a different direction by applying a
Magnetic hysteresis: - new field
Domain(EH) /f 7 / - Domains may be re-randomized by sudden physi

- If the temperature is d above the “Curie point
iron), the domains so randomize  paramagnes




35-3 RL Circuits

+ RC circuits: K closed

RL Circuits (7 off)

LR LR Synol

Current:
Max = /R
37% Max att = L/R

Voltage on L
Max = -id
37% Max att = L/R

3. Energy density in a magnetic field: u
WRRREREE) B

Consider a long solenoid of cross-section area A:
1
U=—LI’
2
L= yn®ld = un’V
B = pynl
The magnetic energy density:
I
: pgn LAl

14
_luD? _ B

2444 20 The electric field

energy density:

Example 36-7 page 830

Compare the energy required to set up, in a cube [ = 10 cm on
edge. (a) a uniform electric field of 1.0010° V/m, (b) a uniform

magnetic field B = 1.0 Tesla.

- :%;,,H;t =0.5%8.9%107" % (10°) %10

=4.5x107.J

Electromagnetic Oscillations: Quantitative

The total energy of a ideal electromagnetic oscillator is conserved.

Current: 2 .
i=—(1-¢™")

Max=§ /R HEES

63% Max att = L/R

Voltage on L :
Max = {l
37% Maxatt =L/R

35-4 Energy storage in a magnetic field

In Capacitor: The energy density in electric field

1. The magnetic energy in a self-inductance L:
& 0~ ay
The work done by the seat:
AW =—g dg = -¢,idt,
ot _di .
SdW = Li—dt = Lidi
dt

W= Lidi= % L ==
o 2

Energy is stored in the magnetic field in the solenoid.

+ Although this equation is derived from a solenoid, the

equation gives the energy density stored at any point (in a
vacuum or in a nonmagnetic substance) where the magnetic
field B.

+ Symmetry:

etic Oscillation
%)

35-5 Electroma
(B

+ LC Circuits:

TrrHT
)

-

Ladaguni

Damped and Forced oscﬂlatmns

( BEFEFNSZHa4RzD)

If there are resistances in circuit, the U'is no longer constant.

Over-damped

(ZIEE)

RL Circuits
vitch has been in
r along time,
to be =0, it is moved
to position b.

Loop law:

+ The appropriate initial condition is

- The solution then must

have the form:

2. The magnetic energy stored
in two solenoid
The work done by the source for
interacting inductance M:
W= Wy = [ eyt~ [ gyaisde
= . di, L di
- (=M, =2 = Miy Ly

The total magnetic energy o Jd'f: (M iy + M i)
in two solenoids: g e .
— =M i)
v=Lor e i e,

PRl = ML,

Yoty + Lo i,
Jiilee 0t

lL‘z,’ Lo
2 2

The total magnetic energy in
k solenoids:

14 ol &

i 52 L+ ZIMU,'J,

Example 36-6 page 829

+ Calculate the energy stored in the magnetic field for a
length [ of such a cable.

+ What is the inductance of alength [ of the cable?

fBedi = i
Hl

B=

k= 1 c el
2, 4t
dU, =uy, 2mrldr = i
_ il dr
. r

le Harmonic Motion

s RN 1R

electromagnetic

Analogy to S

mechanical
U= %/C\’: Capacitor Ug= lq

Inductor

R
g=e  (A+Bt)+Ce

Discharging




3)Damped Oscillation ( BEEH:%)

Forced Oscillations and Resonance

(ZiRiREHFNILR)

g=q,¢ 2! cos(wt + @)+ Ce

Ife=¢, cosw't
f o

When @”=1]
iy exhibits @ maximum

S LRTELTIVT) Fl The Gauss Law of Electricit y : ff € o+ dd =
{C:U

The Gauss' Law of Magnetism :ﬁ BedA=0

Faraday' s Law of Induction :féoa‘,":f pm ot
o

Ampere' s Loop Law : fﬁo dl = Myl

38-2 Induced Magnetic Field (BREZi1%) and
the Displacement current (RIFSEift)

Amperian

Not at steady condition

a=— 2%

e dA 2 or 4, the enclosed current =/

dd, a8
7’:,”7

Hedl =i +i, =

Maxwell’s Displacement Current

+ Consider applying Ampere’s Law

to the current shown in the Amperian

diagram. loop
« If the surface is chosen as 1,

« If the surface is chosen as 3,
the enclosed current = 0! (i.e.,
there is no current between
the plates of the capacitor)

Big Idea: In order to have

mfor surface 1= ace 3
axwell proposed there was an extra “displacement
current” in the region between the plates, equal to the

current in the wire—
Modified Ampere’s law:

electric displaceme nt flux

= ”— . dA displaceme nt current

displaceme nt current density

2 "ot

Consider in vacuum: In the wires, there is only conduction current ig.

: \ /
In the gap, there is only displacement current ip. L@Eﬂ/{,@ %0 Tz % ZEZ?\ E{']

Lg=E,AE =g P, = AD

dg _ dd,
at

— db 3

When the capacitor is fully charged, then ip=0, ip=0

+ The induced magnetic field B is produced by the
changing electric filed E inside the capacitor.

KR
A )< / x\
XX M;K\x,q

!

XXX X xx
><2‘>//><

f{ﬁ odT:J i;—fld;-\

{gtdf-:”-%%fid/-i

fé-df:,ucgcf %f-dﬁu

=28-10°T

=280nT

E .
C;—t>0 B is clockwise, eddy magnetic field ( (RIERE1A)

:Eca.a- 107 CTINm') - (47 107 Tum! A)

(5.0 107}(10")

They can scarcely be measured with simple apparatus.

(a) Derlve an expression for the
induced magnetic field at radius r in
the region between the plates.
Consider bothr<sR andr =R.

(b) Find B at r =R for dE/dt =1012V//m. s
and R=5.0cm.

. (fH'.dF- ”rj:l+%3-d,n[

Dde=0




* What is the displacement current for the situation of 38-3 Maxwell’s Eq uations
Sample Problem 38-1?

* Invacuum: The Gauss' Law of Electricit y: ﬁg sdA= i

&y

Solution:

The Gauss' Law of Magnetism :ﬁfi e dA=0

. - dD 0B -
Faraday’ s Law of Induction +{ £ # i =7T‘==7H”—-dA

=89-10". 7. (5-107°)7. 10"
=0.07A =70mA

- GE -
Ampere' s Loop Law : fB-df = i+ f,L:z;JJ[(B—-dA
t

(As extended by Maxwell )

* In the dielectric and magnetic materials
ip is a reasonably large current, but B=280 nT,
Why?

Under the same conditions, both kinds of current are
equally effective in generating magnetic field.

* From Faraday’s Law

dD

dt
1 b,
h dt

a

Bincreasing, E-h=—

A more detailed representation
of a cylindrical
electromagnetic resonant
cavity

E

B-27r = &,

5 - Ha& 0,
dt

27

2. The emitting of Electromagnetic Wave

EERE

The condition of emitting electromagnetic wave:
(1) The frequency of electromagnetic wave has to
be very high:

(2) The LC circuit must be opened:

L, C are the distributed element

L, C is decreasing, the circuit is opening.

_'f_a)_1 1
° o1 27 4LC

.. L,C have to bevery small

3. The transmission of EMW Vortex electric field,
(BERAIEHE) Vortex magnetic field

« Transmission Medium? Ether, Aether (L&) (ﬁﬁ%ﬁmﬁﬁmﬁ)

« It is not necessary to have medium for the
transmission of electromagnetic wave.

A wire, i surge back and forth in the wire.

Dipole antenna (ﬁﬂﬁ?ﬁﬁ)

Changing a magnetic Changing an electric
field produce and an field produce and a
electric field magnetic field

- e - . . D - .
JE ool =—[[ e dh = Electromagnetic Wave



Radiation from oscillating dipole

« V(t)=V,cos(at)

= Wave propagates outward at speed of light

Dipole radiation patte rn 39-4 The properties of electromagnetic wave

proportional to sin{ewt)

At distant from the wave source, there are 5 propertieg

In free space (HF%&)): 0., =0, ju -0

1. Horizontal Wave (H§E)
2 ]

3.E, H are in phase ([Ei#8)

+ Oscillating electric dipole (JRHRIBMIRIE) generates e-m . __ ___
radiation that is Iinearly polarized (ﬁﬁﬁ) in the CHGi a2 { AN |Wes = K iy H
direction of the dipole. = 004

+ Radiation pattern is doughnut shaped & outward traveling

- zero amplitude above and below dipole.
maximum amplitude in-plane.

= oEx , 2Ey  SE: _
V'E=0 oy oz =0
— 2Bx BBg aB!_
> v-8=0 V-H=0 x "oyt
3 ZRue 17K
H to9 oH aHs 5Exs oF,» obro
V‘KE“'kﬂJAﬂat 2 2 ] at k) =] _;._3 aiz l"b +’5Eaj+ k)
H

For the plane wave (FHR)

The phase in the wave plane is the & E T - H ,(z,t) = constant
same, ¢ is independent of x, y. o =

For fs.implicity,E,' H is independent R E (z,t) = constant
of x, y. low, 0w, @ . 6.

E;, H; is is independent of EMWV.
So, assume E;=0, H,=0




DhFEBL 2502 L ESHAREw R, R edotda o0, L0 D G = G2 = S5 =5 =0
SH.Z 1) =88, Eoz.t)=FF  DE=f+Es H=HatH, >El7 HLT (Bp£#37)

’{Fi‘i;; E*#;o ’ E_-,'—'U

>37=0, 3¥=0 Hoet)=Phe . > Hyto
ssume =0

— - N
E6T s 4
H'-“-ng

i(eot—kz)

i(wt—kz)

2z _ . 2
k™ =K &K | U@
K=K 8K H©

wt— kz = constant

E .=E, gl The speed of wave:
(iBGE ) w 1
y _

iy o —
dt kK&K, Hy

_ i(wt—kz)
H, =H,e

angular
frequency

In vacuum:

£, =89 107*C?/N-m* *"experimental result"

M, =47- 107 Wb/A-m  "convention"
1

v=cCc=
\fanf"“o

K2 =K 8K My =3-10°m/s

k=K £ My @

- I

S /M /

NN 72/ ]

g
y \ /

KE o =K ,Jy®H !

P ilwt—kz) __ .
—ikE e =K, Ml0H

w
ExO = Kmlut I H ¥0 :K.-MU‘O VH vy

1
=Ky —=H
Kr:r\lu’UK eEE )
VKegn Exn = K mlU'E Hyn

- foe oy,
KE&DEDE - Km!"’DHCe




At not steady condition: ErNAT

The rate of the electromagnetic energy changing:

39-5 The Energy Flux Density and
Momentum of the Electromagnetic Wave

(EBECHRIREREEMEIR)

1. The energy principle and the Energy Flux
Density vector of Electromagnetic Wave

dt ”j( DeE+ B- 1) dv] ET(D'E+5;-H)=KF i(f'f‘)f}( ME(H-H]
IS
oD

Maxwell’s ? =VXH -],
Eq.s:

. 8H
-E+B-H)dv —2KPE-—t+2K ,u1.l-faE
_25-—+2H' a8

ot ot

=2Ee(VXH —j)—2H «(VXE)

In the space:
u=[ffe

=2AEe(VXH)—Ha(VXE) -] oE]

=—2Ve(EXH)-2] »E

=—Ve(EXH)

O;_L:=_JJJV0(§XQ)dV—IJJ(fﬂOi::)dv

o> Jo OF N0 qp,

e ARG GILS|OREEY The second term —[[[7 e Ex A [[[ 1], Erev The first term

- at Sl
=—ff(ExH) edA-[[[(], 0 Erav .. ”J(jUOE)dv —H(Ex i) e i [[[(, 0 Erow ﬁ(EXH)-dA

] ; . ) 1. - - -
Ohm’s Law in a battery = o E=— = Introduce new vector:

. _ — Poynting Vector
[[Ciys Brav=(j, e 1240 [ e E)dv=i'R—i/ S=E*H M eoszm

= j, e (g, —K)AA-Al
— 0?AA-Al— 7 e KAA- The work done
= Py AA-Al = j, e KAA-Af by the source

- pA—Lung)’ —(j,AAIK e AT) per unit time ﬁ Se dA Q+ P

The electromagnetic energy flowing out
from the surface A of a volume V per
unit time.

The Electromagnetic Energy Flux(EEBGHEERER).

Paifdisnd  (: FRAE
FBxR A kT $L R ANER SRARATHET

1.4.=‘Lh;+1li.5=“':f:l51 B, &
Emﬂl

m

MaK

Ermj; -J-_I_’— <M>:E°Erms

DFURBERE . (W = €XE" = & Eon (sin"wi-kx) =
BATRE = cw = ¢ B2 T $4ip3i) ﬁﬂﬁ_,ﬂﬁ{i@%ﬁé‘a@zﬁﬁg

- 2 | =
I=c<w> > I=Ct Em™ Jag Erms
1 5 _ En-s
i<“) EA<E > = JAn _‘> iotrm_s‘ %u.’: B“MS— “r

The energy transport in DC circuit

This result can be applied to the steady field.

In the seat



2. Momentum and Pressure of Radiation e
Beside carrying energy, electromagnetic waves may also

Te—— -
transport linear momentum. S AF =—(5, -5,

(o

JAA

_ - 1 - =
AG, =AF -At=—(5, -5, JAA-At
[«

. - . 1 - -
AG = -AG, = —AF -At=—(5,, S, ) AA. At
[

AF -cAt=(5, 5 _)AA At

ref
IR R

SAF =—(5, —
C

JAA

The pressure: For reflectivity 100%

For reflectivity 0% for Black Body

>T (#8M@)Doppler effect:
39-8 The Doppler (BRI effect for BN, | MOl 27 G

Iight wave At =T, the light traveling perpendicular to the relative

motion of the frames,

[
|
f=hy
. /C
Y cost

purely relativistic effect, it leads to red-shift of the light. e
1+ U/Vv where f, frequency measured in

1. Sound wave, observer fixed, source moving away
1

f=f
2. Sound wave, source fixed, observer moving away

f=f-uw

3. Light wave, source and observer separating (£I#8%

» Longitudinal ($Am))Doppler effect:

(a) the source approaching (0=1m) (b) the source leaving (6 =0)




JUASKE
Index of Refraction

The wave incident on an interface can not only reflect, but it
can also propagate into the second material.

- The speed of an electromagnetic wave is different in matter
than it is in vacuum. ;

- Recall, we derived from Maxwell’s eqns in vacuum: c¢=
T
Moy

How are Maxwell’s eqns in matter different?
km= 1 (for most materials) 1 5

[k K ; ! .

YR by 8 My .

+ Therefore, the speed of light in matter is related to the speed of
light in vacuum by:

where n = “index of refraction” of the material: n=./k_ >1

The index of refraction is frequency dependent: For
example, in glass

Nplue = 1.53 n =1.52

A Prism (#58)

Changing iy, there is smallest angle &

The condition is:

i =i'ori, =i,
s=(-i)+G—,) ' 77

=G40~ + 1)) sin( &F Omin y

o =i, +i, n=

o
sin
2

Deriving the of Reflection and Refraction
by Huygen’s Principle

ZD,B,A =i,

sin i, = AD,

? AB,
sinj, = AB,

! AB,

csind _AB,_wt_ v

AC =AB, =yt
AAC, B =AB A A
LA AB =/C B A

= i'=i, the law of reflection Tty

.swmz AD vt v,

sin i, n, )
. ——=—The law of refraction
sini, n

25 RIS

2. The Fermat’s Principle (B

A light ray traveling from one fixed point to another fixed
points follows a path such that, compared with nearby
paths, the time required is either a minimum, or a

maximum or remains unchanged. (that is stationary)

L=afa" 4o a6 v a0’

a 1 2k 2{d—x)

de 2 afatex 2B+ (d-wt

L=nva"+x" +n/b" +{d-x’
dl 1 n2x 1 n20d-x

dc 2 Jai4x 2 NEETErE
d-
n, .x_:n% n sinf) =n,sind,
Va®+x Nb H(d=-x*

reflected inQ
sin@, n,
ray . 7‘:_1>1‘02>01
GLASS Sin 6]1 n,
AR e, light is bent away from the norma
as 01 gets bigger, 02 gets bigger, but
8, can never get bigger than 90° 1l

A

In general, if sin 61> (nz/m), wé have NO refractéd ray;
we have TOTAL INTERNAL REFLECTION.

For example, light in water which is incident on an air surface with
angle 91 > A =sin"1(1.0/1.5) = 41.8>  will be totally reflected.
This property is the basis for the optical fibers used in
communication.

40-3 Huggen’s Principle (FEEEfRE)

All points on a wavefront(ifil) can be considered as point
sources for the production of spherical secondary wavelets (
Fif)). After a time t the new position of a wavefront is the
surface tangent to the secondary wavelets.

Wavefront

Spherical Wave

40-4 Fermat’s Principle(B 3 [RIE)

1. The Optical Path Length (3£

[
In several medium :

Al AL A
e St —L 4 —1 =
- v,

y ¥, V.

3

“nAlL QMNP )

Tc

The optical path length:




40-6 Image Formation by Spherical Mirror

(BRERAR)
1. Refraction on a spherical surface:
nsin @ =n'sin 0"
O0-u=0+u=d¢

p o+r r
singg sinB  sinu
P _i-r _
sing  sin@' sinu'
sin f)
Csind
roosind’
p P
Cnlotr)  mli-r)

sin b

nsin € = n'sin &'

Object distance: o
Image distance: i

[p'=lo+n +r’ —2rlo+ricosp=0" +4r(o+ r)sin?%
]
ip‘z:(ifr)?+r2+2r(r'7r)c05(}5:i274r(i7r) sin:E

.2
o i . ¢ 1 N 1 )

=—4rsin® —[ . . ]
2 nlo+r) n (i—r)

e —_
nlo+r)” n’li-r)’

L 1 1
=—4rsin” 2] S +—
n‘lo+r) n“(i—r)

nlo+n) nlli-r) 2

o’ i

vt <ct, =07,07 <<

Object distance: o
Image distance:i

For any Q point (object distance o, there
is image Q’ point (image distance i ).

2 g 2
AU 1 first focal point:
n'(i—r)

n“(o+r)?

n(o+r)
= The second focal point:

For the reflection at the surface of a mirror

(BRERSTRRIR)

(2’) If the @’ point is at the left of A point (3E{§), i >0
If the @’ point is at the right of A point (EE{f), i <0

nsin 0 = n'sin ('
if 0>0, then@'<0

n“lo+r) n?li—r)

This result indicates that object Q
point can not be imaged into Q
’ point through a spherical

‘ surface.
Object distance: o
Image distance:

Jn‘(o+r)2
1

> + =0
n‘{o+r)

nli-r)

3. Sign Conventions

(FSL5E)

If we suggest that the incident light
ray from left to right.

(1) If the Q point is at the left of A point (3£4) 050
If the Q point is at the right of A point (E2'#) 0<0
(2) If the @’ point is at the left of A point (ER{f) i<0
If the @’ point is at the right of A point (32{§) i>0
(3) If the C point (BRd) is at the left of A point (M), r<0
If the C point (BRy) is at the right of A point ({}), r>0

4. The image formation of paraxial object point
and lateral magnification

(G540 R RIS RRF SUA)

Object
Plane

P
YIL B
A

o

Paraxial Ray: y2, y’
2¢<0?,i?,r?

a

Sign convention: (4) If P (or P’) is above the light axis, y (or y’)>0
If P (or P’) is below the light axis, y (or y’)<0

_ Lateral Size of Image  y'

Lateral Magnification:
" Lateral Size of Object - y

Paraxial Ray: n0 = n'0', y=o0-0, -y =i-0 R lRCR-iCe 1R

oy 0 nei

y 5_ n-o




5. Image Formation of Compound Optical System 40-7 Thin Lens (ﬁﬁﬁ)

In most refraction situation there is more than one refracting surface.

1. The formula of focal length(#&2E) f.

Lens maker’s Equation
(ESRmEAR)

f,= [

- If £>0, >0 Converging lens
(DiEH)

A lens that is thicker at the
center than at the edges.

- If f<0, <0 diverging lens
(M]3%E5R)

A lens that is thicker at the
edges than at the center.

If n=n’, f=F

Gauss’ Form
Sign Convention:
(6) If Q is at the left of F point, x>0
If Q is at the right of F point, x<0
(7) If @’ is at the left of F’ point, x’<0
If Q’ is at the right of F’ point, x’>0 For example:

1
f =—50cm=-0.5m, P=——=-2.000

. 1 -
Newton’s Form: Diopter, D (H) P T 0.5




